initial commit

This commit is contained in:
2025-02-19 16:09:44 +08:00
commit 9eb3879aab
19 changed files with 1426 additions and 0 deletions

290
.gitignore vendored Normal file
View File

@@ -0,0 +1,290 @@
# Created by https://www.toptal.com/developers/gitignore/api/c,c++,visualstudiocode,python,cmake
# Edit at https://www.toptal.com/developers/gitignore?templates=c,c++,visualstudiocode,python,cmake
### C ###
# Prerequisites
*.d
# Object files
*.o
*.ko
*.obj
*.elf
# Linker output
*.ilk
*.map
*.exp
# Precompiled Headers
*.gch
*.pch
# Libraries
*.lib
*.a
*.la
*.lo
# Shared objects (inc. Windows DLLs)
*.dll
*.so
*.so.*
*.dylib
# Executables
*.exe
*.out
*.app
*.i*86
*.x86_64
*.hex
# Debug files
*.dSYM/
*.su
*.idb
*.pdb
# Kernel Module Compile Results
*.mod*
*.cmd
.tmp_versions/
modules.order
Module.symvers
Mkfile.old
dkms.conf
### C++ ###
# Prerequisites
# Compiled Object files
*.slo
# Precompiled Headers
# Compiled Dynamic libraries
# Fortran module files
*.mod
*.smod
# Compiled Static libraries
*.lai
# Executables
### CMake ###
CMakeLists.txt.user
CMakeCache.txt
CMakeFiles
CMakeScripts
Testing
Makefile
cmake_install.cmake
install_manifest.txt
compile_commands.json
CTestTestfile.cmake
_deps
### CMake Patch ###
CMakeUserPresets.json
# External projects
*-prefix/
### Python ###
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
### Python Patch ###
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
poetry.toml
# ruff
.ruff_cache/
# LSP config files
pyrightconfig.json
### VisualStudioCode ###
.vscode/*
!.vscode/settings.json
!.vscode/tasks.json
!.vscode/launch.json
!.vscode/extensions.json
!.vscode/*.code-snippets
# Local History for Visual Studio Code
.history/
# Built Visual Studio Code Extensions
*.vsix
### VisualStudioCode Patch ###
# Ignore all local history of files
.history
.ionide
# End of https://www.toptal.com/developers/gitignore/api/c,c++,visualstudiocode,python,cmake
# 排除生成产物
!serial_module.so

10
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,10 @@
{
"files.associations": {
"hx_serial.h": "c",
"stdlib.h": "c",
"fec.h": "c",
"unistd.h": "c",
"hx_ringbuffer.h": "c",
"zlib.h": "c"
}
}

29
CMakeLists.txt Normal file
View File

@@ -0,0 +1,29 @@
cmake_minimum_required(VERSION 3.10)
project(serial_module)
# 查找 Python 开发包
set(Python3_ROOT_DIR ~/miniconda3/envs/videomea_deploy)
find_package(Python3 REQUIRED COMPONENTS Development)
# 添加 Python 头文件路径
include_directories(${Python3_INCLUDE_DIRS})
# 添加系统头文件路径(如果 hx_serial.h 在默认位置,可以省略)
# include_directories(/usr/include /usr/local/include)
# 添加源文件
set(SOURCES serial_module.c hx_ringbuffer.c)
# 创建 Python 模块
Python3_add_library(serial_module MODULE ${SOURCES})
find_package(ZLIB REQUIRED)
target_link_libraries(serial_module PRIVATE hx-serial fec ${ZLIB_LIBRARIES})
# 设置输出目录和文件名
set_target_properties(serial_module PROPERTIES
LIBRARY_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}
PREFIX ""
SUFFIX ".so"
)

123
hx_ringbuffer.c Normal file
View File

@@ -0,0 +1,123 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "hx_ringbuffer.h"
int by_ringbuf_init(by_ringbuf_t *rb, int size) {
#ifdef BY_RINGBUF_STATIC_ALLOC
// 使用预先分配的内存
static uint8_t static_buffer[BY_RINGBUF_STATIC_BUFFER_SIZE];
if (size > sizeof(static_buffer)) {
return -1; // 预先分配的内存不足
}
rb->buffer = static_buffer;
#else
// 使用 malloc 动态分配内存
rb->buffer = (uint8_t *)malloc(size);
if (rb->buffer == NULL) {
return -1; // 分配内存失败
}
#endif
rb->size = size;
rb->head = 0;
rb->tail = 0;
rb->is_full = false;
return 0;
}
void by_ringbuf_free(by_ringbuf_t *rb) {
#ifndef BY_RINGBUF_STATIC_ALLOC
// 只有使用 malloc 分配的内存才需要释放
if (rb->buffer) {
free(rb->buffer);
rb->buffer = NULL;
}
#endif
rb->size = 0;
rb->head = 0;
rb->tail = 0;
rb->is_full = false;
}
int by_ringbuf_append(by_ringbuf_t *rb, const uint8_t *data, int len) {
if (len > by_ringbuf_available_space(rb)) {
return -1; // 缓冲区空间不足
}
for (int i = 0; i < len; i++) {
rb->buffer[rb->head] = data[i];
rb->head = (rb->head + 1) % rb->size;
if (rb->head == rb->tail) {
rb->is_full = true;
}
}
return len;
}
int by_ringbuf_pop(by_ringbuf_t *rb, uint8_t *data, int len) {
if (len > by_ringbuf_available_data(rb)) {
return -1; // 数据不足
}
for (int i = 0; i < len; i++) {
data[i] = rb->buffer[rb->tail];
rb->tail = (rb->tail + 1) % rb->size;
rb->is_full = false;
}
return len;
}
int by_ringbuf_find(by_ringbuf_t *rb, const uint8_t *pattern, int pattern_len) {
int available_data = by_ringbuf_available_data(rb);
if (pattern_len > available_data) {
return -1; // 数据不足,无法查找
}
for (int i = 0; i <= available_data - pattern_len; i++) {
int match = 1;
for (int j = 0; j < pattern_len; j++) {
int index = (rb->tail + i + j) % rb->size;
if (rb->buffer[index] != pattern[j]) {
match = 0;
break;
}
}
if (match) {
return i; // 返回匹配的起始位置
}
}
return -1; // 未找到匹配
}
int by_ringbuf_available_data(by_ringbuf_t *rb) {
if (rb->is_full) {
return rb->size;
}
return (rb->head - rb->tail + rb->size) % rb->size;
}
int by_ringbuf_available_space(by_ringbuf_t *rb) {
return rb->size - by_ringbuf_available_data(rb);
}
// 调试函数:打印环形缓冲区中的数据及其序号
void by_ringbuf_debug_print(by_ringbuf_t *rb) {
int available_data = by_ringbuf_available_data(rb);
if (available_data == 0) {
printf("Ring buffer is empty.\n");
return;
}
printf("Ring buffer content (size: %d, available data: %d):\n", rb->size, available_data);
for (int i = 0; i < available_data; i++) {
int index = (rb->tail + i) % rb->size;
printf("[%04d] 0x%02X\n", i, rb->buffer[index]);
}
}

46
hx_ringbuffer.h Normal file
View File

@@ -0,0 +1,46 @@
#ifndef _BY_RINGBUF_H__
#define _BY_RINGBUF_H__
#include <stdint.h>
#include <stdbool.h>
// 定义宏来选择内存分配方式
// 如果定义了 BY_RINGBUF_STATIC_ALLOC则使用预先分配的内存
// 否则使用 malloc 动态分配内存
// #define BY_RINGBUF_STATIC_ALLOC
#define BY_RINGBUF_STATIC_BUFFER_SIZE (8192)
typedef struct {
uint8_t *buffer; // 缓冲区指针
int size; // 缓冲区大小
int head; // 写指针
int tail; // 读指针
bool is_full; // 缓冲区是否已满
} by_ringbuf_t;
// 初始化环形缓冲区
extern int by_ringbuf_init(by_ringbuf_t *rb, int size);
// 释放环形缓冲区
extern void by_ringbuf_free(by_ringbuf_t *rb);
// 向缓冲区追加数据
extern int by_ringbuf_append(by_ringbuf_t *rb, const uint8_t *data, int len);
// 从缓冲区弹出数据
extern int by_ringbuf_pop(by_ringbuf_t *rb, uint8_t *data, int len);
// 查找缓冲区中是否包含特定数据
extern int by_ringbuf_find(by_ringbuf_t *rb, const uint8_t *pattern, int pattern_len);
// 获取缓冲区中可用数据的大小
extern int by_ringbuf_available_data(by_ringbuf_t *rb);
// 获取缓冲区中空闲空间的大小
extern int by_ringbuf_available_space(by_ringbuf_t *rb);
// 调试函数:打印环形缓冲区中的数据及其序号
extern void by_ringbuf_debug_print(by_ringbuf_t *rb);
#endif // _BY_RINGBUF_H__

81
jpeg_corrupt_test.py Normal file
View File

@@ -0,0 +1,81 @@
import cv2
import numpy as np
def corrupt_data(data, corruption_type='modify', severity=1):
"""
对二进制数据进行损坏
:param data: 原始二进制数据
:param corruption_type: 损坏类型 ('modify', 'shift', 'loss')
:param severity: 损坏严重程度 (1-10)
:return: 损坏后的二进制数据
"""
data = bytearray(data) # 转换为可变的 bytearray
length = len(data)
if corruption_type == 'modify':
# 修改部分数据
for i in range(severity * 5):
idx = np.random.randint(0, length)
data[idx] = np.random.randint(0, 256)
elif corruption_type == 'shift':
# 数据移位
shift = severity * 10
data = data[shift:] + data[:shift]
elif corruption_type == 'loss':
# 数据丢失
loss_start = np.random.randint(0, length - severity * 10)
data[loss_start:loss_start + severity * 10] = b'\x00' * (severity * 10)
return bytes(data)
def main():
# 打开摄像头
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("无法打开摄像头")
return
while True:
# 读取一帧图像
ret, frame = cap.read()
if not ret:
print("无法读取图像")
break
frame = cv2.resize(frame, (224, 224))
# 显示原始图像
cv2.imshow('Original Image', frame)
# 将图像编码为 JPEG 格式的二进制数据
ret, jpeg_data = cv2.imencode('.jpg', frame)
if not ret:
print("图像编码失败")
break
# 对二进制数据进行损坏
corrupted_data = corrupt_data(jpeg_data, corruption_type='modify', severity=2)
# 解码损坏后的二进制数据
corrupted_image = cv2.imdecode(np.frombuffer(corrupted_data, dtype=np.uint8), cv2.IMREAD_COLOR)
if corrupted_image is None:
print("损坏后的数据无法解码")
else:
# 显示损坏后的图像
cv2.imshow('Corrupted Image', corrupted_image)
# 等待用户按键
key = cv2.waitKey(0)
if key == ord('q'): # 按下 'q' 键退出
break
# 释放摄像头并关闭所有窗口
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()

BIN
recv_test Executable file

Binary file not shown.

141
recv_test.c Normal file
View File

@@ -0,0 +1,141 @@
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include "hx_serial.h"
#include "hx_ringbuffer.h"
#define FRAME_HEADER_1 0x55
#define FRAME_HEADER_2 0xAA
#define MAX_DATA_LEN 232
#define CRC32_LEN 4
#define FRAME_HEADER_LEN 2
#define FRAME_SEQ_LEN 1
#define DATA_LEN_LEN 1
#define FRAME_OVERHEAD (FRAME_HEADER_LEN + FRAME_SEQ_LEN + DATA_LEN_LEN + CRC32_LEN)
#define MAX_FRAME_LEN (FRAME_OVERHEAD + MAX_DATA_LEN)
// CRC32 校验函数(假设已经实现)
uint32_t crc32(const uint8_t *data, int len);
// 解析一帧数据
int parse_frame(by_ringbuf_t *ringbuf, uint8_t *output_data, int *output_len) {
uint8_t frame[MAX_FRAME_LEN];
int available_data = by_ringbuf_available_data(ringbuf);
// printf("Available data: %d\n", available_data);
// 检查是否有足够的数据解析一帧
if (available_data < FRAME_OVERHEAD) {
return -1; // 数据不足,无法解析
}else{
// by_ringbuf_debug_print(ringbuf);
}
// 查找帧头
uint8_t header[2] = {FRAME_HEADER_1, FRAME_HEADER_2};
int header_pos = by_ringbuf_find(ringbuf, header, 2);
printf("Header pos: %d\n", header_pos);
if (header_pos < 0) {
return -1; // 没有找到帧头
}
// 弹出帧头之前的数据
by_ringbuf_pop(ringbuf, frame, header_pos);
// 检查是否有足够的数据解析一帧
if (by_ringbuf_available_data(ringbuf) < MAX_FRAME_LEN) {
return -1; // 数据不足,无法解析
}
// 读取帧数据
by_ringbuf_pop(ringbuf, frame, MAX_FRAME_LEN);
// 解析帧序号、有效数据长度、数据段和 CRC32
uint8_t seq = frame[FRAME_HEADER_LEN];
uint8_t valid_data_len = frame[FRAME_HEADER_LEN + FRAME_SEQ_LEN];
uint8_t *data_segment = &frame[FRAME_HEADER_LEN + FRAME_SEQ_LEN + DATA_LEN_LEN];
uint32_t received_crc = *(uint32_t *)&frame[FRAME_HEADER_LEN + FRAME_SEQ_LEN + DATA_LEN_LEN + MAX_DATA_LEN];
printf("Received frame: %d, valid_data_len: %d, received_crc: %08X\n", seq, valid_data_len, received_crc);
// // 计算 CRC32 校验
// uint32_t calculated_crc = crc32(data_segment, valid_data_len);
// if (received_crc != calculated_crc) {
// return -1; // CRC 校验失败,丢弃该帧
// }
// 将有效数据拼接到输出缓冲区
memcpy(&output_data[*output_len], data_segment, valid_data_len);
*output_len += valid_data_len;
// for(int i = 0; i < valid_data_len; i++){
// printf("0x%02X ", data_segment[i]);
// }
// 判断是否为最后一帧
if (valid_data_len < MAX_DATA_LEN) {
return 1; // 最后一帧,解析完成
}
return 0; // 成功解析一帧,但可能还有更多帧
}
// 边读取边解析串口数据
int parse_serial_data(by_serial_t *serial_port, by_ringbuf_t *ringbuf, uint8_t *output_data, int *output_len) {
uint8_t buffer[MAX_FRAME_LEN];
int ret;
// 从串口读取数据到环形缓冲区
ret = by_serial_read(serial_port, buffer, MAX_FRAME_LEN);
if (ret > 0) {
by_ringbuf_append(ringbuf, buffer, ret);
}
// 尝试解析环形缓冲区中的数据
while (1) {
int parse_result = parse_frame(ringbuf, output_data, output_len);
if (parse_result == 1) {
// printf("Parsed data length: %d\n", *output_len);
return 0; // 解析完成
} else if (parse_result == -1) {
// printf("Failed to parse frame\n");
break; // 数据不足或解析失败,退出循环
}
}
return -1; // 未找到完整帧
}
// 示例 CRC32 校验函数(需要根据实际情况实现)
uint32_t crc32(const uint8_t *data, int len) {
// 这里实现 CRC32 校验算法
// 例如使用查表法或其他方法计算 CRC32
return 0; // 返回计算出的 CRC32 值
}
int main() {
by_serial_t serial_port;
by_ringbuf_t ringbuf;
uint8_t output_data[4096];
int output_len = 0;
// 初始化串口和环形缓冲区
by_serial_init(&serial_port, "/dev/ttyUSB1");
by_ringbuf_init(&ringbuf, 4096);
// 边读取边解析串口数据
while (1) {
if (parse_serial_data(&serial_port, &ringbuf, output_data, &output_len) == 0) {
printf("Parsed data length: %d\n", output_len);
// 处理解析后的数据
break; // 解析完成,退出循环
} else {
// printf("Waiting for more data...\n");
}
usleep(1000);
}
// 释放资源
by_ringbuf_free(&ringbuf);
return 0;
}

1
serial_data.txt Normal file

File diff suppressed because one or more lines are too long

262
serial_module.c Normal file
View File

@@ -0,0 +1,262 @@
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <zlib.h> // 引入 zlib 库
#include <fec.h> // 引入 libfec 库
#include "hx_serial.h"
#include "hx_ringbuffer.h"
#include <pthread.h> // 引入 pthread 库
// 宏定义
#define USE_FEC
#ifdef USE_FEC
#define FEC_SIZE 32 // 前向纠错冗余数据大小
#else
#define FEC_SIZE 0 // 前向纠错冗余数据大小
#endif
#define FRAME_HEADER 0xAA55 // 帧头
#define FRAME_SIZE (240) // 每帧大小
#define HEADER_SIZE (4) // 帧头 + 帧序号 + 数据长度
#define CHECKSUM_SIZE (4) // CRC32 校验和大小4 字节)
#define DATA_SIZE (FRAME_SIZE - HEADER_SIZE - CHECKSUM_SIZE - FEC_SIZE) // 数据段大小
#define RING_BUFFER_SIZE (1024 * 10) // 环形缓冲区大小 - default 10KB
#define QUEUE_MAX_SIZE 1024 // 队列最大容量
// 全局变量
static by_serial_t serial_port;
static by_ringbuf_t ring_buffer;
static uint8_t send_buffer[FRAME_SIZE];
static uint8_t frame_counter = 0;
static uint8_t data_len = 0;
// 定义队列结构体
typedef struct {
uint8_t *data;
int length;
} FrameData;
// 队列相关定义
static FrameData frame_queue[QUEUE_MAX_SIZE]; // 存储接收到的数据帧
static int queue_head = 0; // 队列头指针
static int queue_tail = 0; // 队列尾指针
static pthread_mutex_t queue_mutex = PTHREAD_MUTEX_INITIALIZER; // 保护队列的互斥锁
static bool stop_receiving = false; // 控制接收线程停止的标志
// 前向声明
void *receive_thread_func(void *arg);
// 计算 CRC32 校验和
uint32_t calculate_crc32(const uint8_t *data, size_t length) {
return crc32(0, data, length);
}
// 解析一帧数据
int parse_frame(by_ringbuf_t *ringbuf, uint8_t *output_data, int *output_len) {
uint8_t frame[FRAME_SIZE];
int available_data = by_ringbuf_available_data(ringbuf);
// 检查是否有足够的数据解析一帧
if (available_data < HEADER_SIZE + CHECKSUM_SIZE + FEC_SIZE) {
return -1; // 数据不足,无法解析
}
// 查找帧头
uint16_t header = FRAME_HEADER;
int header_pos = by_ringbuf_find(ringbuf, (uint8_t *)&header, 2);
if (header_pos < 0) {
return -1; // 没有找到帧头
}
// 弹出帧头之前的数据
by_ringbuf_pop(ringbuf, frame, header_pos);
// 检查是否有足够的数据解析一帧
if (by_ringbuf_available_data(ringbuf) < FRAME_SIZE) {
return -1; // 数据不足,无法解析
}
// 读取帧数据
by_ringbuf_pop(ringbuf, frame, FRAME_SIZE);
// 解析帧序号、有效数据长度、数据段和 CRC32
uint8_t seq = frame[2];
uint8_t valid_data_len = frame[2 + 1];
uint8_t *data_segment = &frame[2 + 1 + 1];
uint32_t received_crc = *(uint32_t *)&frame[2 + 1 + 1 + DATA_SIZE];
// 计算 CRC32 校验
uint32_t calculated_crc = calculate_crc32(frame, HEADER_SIZE + DATA_SIZE + FEC_SIZE);
if (received_crc != calculated_crc) {
printf("CRC mismatch! Expected: %08X, Received: %08X\n", calculated_crc, received_crc);
return -1; // CRC 校验失败,丢弃该帧
}
// 将有效数据拼接到输出缓冲区
memcpy(&output_data[*output_len], data_segment, valid_data_len);
*output_len += valid_data_len;
// 判断是否为最后一帧
if (valid_data_len < DATA_SIZE) {
printf("Received last frame!\n");
return 1; // 最后一帧,解析完成
}
return 0; // 成功解析一帧,但可能还有更多帧
}
// 接收线程函数
void *receive_thread_func(void *arg) {
while (!stop_receiving) {
uint8_t output_data[8192];
int output_len = 0;
// 从串口读取数据到环形缓冲区
uint8_t buffer[FRAME_SIZE];
int ret = by_serial_read(&serial_port, buffer, FRAME_SIZE);
if (ret > 0) {
by_ringbuf_append(&ring_buffer, buffer, ret);
}
// 尝试解析环形缓冲区中的数据
while (1) {
int parse_result = parse_frame(&ring_buffer, output_data, &output_len);
if (parse_result == 1) {
// 将解析后的数据放入队列
pthread_mutex_lock(&queue_mutex);
if ((queue_tail + 1) % QUEUE_MAX_SIZE != queue_head) { // 队列未满
frame_queue[queue_tail].data = malloc(output_len);
memcpy(frame_queue[queue_tail].data, output_data, output_len);
frame_queue[queue_tail].length = output_len;
queue_tail = (queue_tail + 1) % QUEUE_MAX_SIZE;
} else {
printf("Queue is full, dropping frame!\n");
}
pthread_mutex_unlock(&queue_mutex);
break;
} else if (parse_result == -1) {
break; // 数据不足或解析失败,退出循环
}
}
usleep(1000); // 避免占用过多 CPU
}
return NULL;
}
// 初始化串口
static PyObject *serial_init(PyObject *self, PyObject *args) {
const char *dev_name;
if (!PyArg_ParseTuple(args, "s", &dev_name)) {
return NULL;
}
if (by_serial_init(&serial_port, dev_name) != 0) {
PyErr_SetString(PyExc_IOError, "Failed to initialize serial port");
return NULL;
}
// 初始化环形缓冲区
if (by_ringbuf_init(&ring_buffer, RING_BUFFER_SIZE) != 0) {
PyErr_SetString(PyExc_IOError, "Failed to initialize ring buffer");
return NULL;
}
// 启动接收线程
pthread_t receive_thread;
stop_receiving = false;
if (pthread_create(&receive_thread, NULL, receive_thread_func, NULL) != 0) {
PyErr_SetString(PyExc_RuntimeError, "Failed to start receive thread");
return NULL;
}
Py_RETURN_NONE;
}
// 发送数据
static PyObject *serial_send(PyObject *self, PyObject *args) {
const char *data;
Py_ssize_t length;
if (!PyArg_ParseTuple(args, "s#", &data, &length)) {
return NULL;
}
size_t offset = 0;
while (offset < length) {
memset(send_buffer, 0, FRAME_SIZE);
// 构造帧头
uint16_t header = FRAME_HEADER;
memcpy(send_buffer, &header, 2);
// 构造帧序号和数据长度
memcpy(send_buffer + 2, &frame_counter, 1);
if (length - offset > DATA_SIZE) {
data_len = DATA_SIZE;
} else {
data_len = length - offset;
}
memcpy(send_buffer + 3, &data_len, 1);
// 拷贝该帧对应数据段
memcpy(send_buffer + HEADER_SIZE, data + offset, data_len);
// 计算 CRC32 校验和
uint32_t crc = calculate_crc32(send_buffer, HEADER_SIZE + DATA_SIZE + FEC_SIZE);
memcpy(send_buffer + HEADER_SIZE + DATA_SIZE + FEC_SIZE, &crc, CHECKSUM_SIZE);
// 发送帧
if (by_serial_write(&serial_port, (const char *)send_buffer, FRAME_SIZE) != 0) {
PyErr_SetString(PyExc_IOError, "Failed to send data over serial port");
return NULL;
}
offset += DATA_SIZE;
frame_counter++;
usleep(80000);
}
frame_counter = 0;
Py_RETURN_NONE;
}
// 接收数据
static PyObject *serial_receive(PyObject *self, PyObject *args) {
pthread_mutex_lock(&queue_mutex);
if (queue_head == queue_tail) {
pthread_mutex_unlock(&queue_mutex);
PyErr_SetString(PyExc_IOError, "No data available in the queue");
return NULL;
}
// 获取队列中最早的数据包
FrameData frame = frame_queue[queue_head];
queue_head = (queue_head + 1) % QUEUE_MAX_SIZE;
pthread_mutex_unlock(&queue_mutex);
// 返回解析后的数据
PyObject *result = Py_BuildValue("y#", frame.data, frame.length);
free(frame.data); // 释放内存
return result;
}
// 模块方法表
static PyMethodDef SerialMethods[] = {
{"init", serial_init, METH_VARARGS, "Initialize serial port"},
{"send", serial_send, METH_VARARGS, "Send data over serial port"},
{"receive", serial_receive, METH_VARARGS, "Receive data from serial port"},
{NULL, NULL, 0, NULL}};
// 模块定义
static struct PyModuleDef serialmodule = {
PyModuleDef_HEAD_INIT,
"serial_module",
NULL,
-1,
SerialMethods};
// 模块初始化函数
PyMODINIT_FUNC PyInit_serial_module(void) {
return PyModule_Create(&serialmodule);
}

BIN
serial_module.so Executable file

Binary file not shown.

269
serial_module_bk.c Normal file
View File

@@ -0,0 +1,269 @@
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <zlib.h> // 引入 zlib 库
#include <fec.h> // 引入 libfec 库
#include "hx_serial.h"
#include "hx_ringbuffer.h"
// #define USE_FEC
#ifdef USE_FEC
#define FEC_SIZE 32 // 前向纠错冗余数据大小
#else
#define FEC_SIZE 0 // 前向纠错冗余数据大小
#endif
#define FRAME_HEADER 0xAA55 // 帧头
#define FRAME_SIZE (240) // 每帧大小
#define HEADER_SIZE (4) // 帧头 + 帧序号 + 数据长度
#define CHECKSUM_SIZE (4) // CRC32 校验和大小4 字节)
#define DATA_SIZE (FRAME_SIZE - HEADER_SIZE - CHECKSUM_SIZE - FEC_SIZE) // 数据段大小
#define RING_BUFFER_SIZE (1024 * 10) // 环形缓冲区大小 - default 10KB
// 全局变量:串口设备和发送缓冲区
static by_serial_t serial_port;
static by_ringbuf_t ring_buffer;
static uint8_t send_buffer[FRAME_SIZE];
static uint8_t send_buffer_test[FRAME_SIZE];
static uint8_t frame_counter = 0;
static uint8_t data_len = 0;
// 计算 CRC32 校验和
uint32_t calculate_crc32(const uint8_t *data, size_t length) {
return crc32(0, data, length);
}
// 前向纠错编码
void fec_encode(uint8_t *data, size_t data_length, uint8_t *fec_data) {
encode_rs_8(data, fec_data, 0);
}
// 前向纠错解码
int fec_decode(uint8_t *data, size_t data_length, uint8_t *fec_data) {
return decode_rs_8(data, (int *)fec_data, 0, 0);
}
// 解析一帧数据
int parse_frame(by_ringbuf_t *ringbuf, uint8_t *output_data, int *output_len) {
uint8_t frame[FRAME_SIZE];
int available_data = by_ringbuf_available_data(ringbuf);
// 检查是否有足够的数据解析一帧
if (available_data < HEADER_SIZE + CHECKSUM_SIZE + FEC_SIZE) {
return -1; // 数据不足,无法解析
}
// 查找帧头
uint16_t header = FRAME_HEADER;
int header_pos = by_ringbuf_find(ringbuf, (uint8_t *)&header, 2);
if (header_pos < 0) {
return -1; // 没有找到帧头
}
// 弹出帧头之前的数据
by_ringbuf_pop(ringbuf, frame, header_pos);
// 检查是否有足够的数据解析一帧
if (by_ringbuf_available_data(ringbuf) < FRAME_SIZE) {
return -1; // 数据不足,无法解析
}
// 读取帧数据
by_ringbuf_pop(ringbuf, frame, FRAME_SIZE);
// 解析帧序号、有效数据长度、数据段和 CRC32
uint8_t seq = frame[2];
uint8_t valid_data_len = frame[2 + 1];
uint8_t *data_segment = &frame[2 + 1 + 1];
uint32_t received_crc = *(uint32_t *)&frame[2 + 1 + 1 + DATA_SIZE];
printf("Received frame: %d, valid_data_len: %d, received_crc: %08X\n", seq, valid_data_len, received_crc);
for(uint8_t i = 0; i < FRAME_SIZE; i++) {
printf("%02X ", frame[i]);
}
printf("\n");
// 计算 CRC32 校验
// uint32_t calculated_crc = calculate_crc32(data_segment, valid_data_len);
uint32_t calculated_crc = calculate_crc32(frame, HEADER_SIZE + DATA_SIZE + FEC_SIZE);
if (received_crc != calculated_crc) {
printf("CRC mismatch! Expected: %08X, Received: %08X\n", calculated_crc, received_crc);
return -1; // CRC 校验失败,丢弃该帧
}
// 将有效数据拼接到输出缓冲区
memcpy(&output_data[*output_len], data_segment, valid_data_len);
*output_len += valid_data_len;
// 判断是否为最后一帧
if (valid_data_len < DATA_SIZE) {
printf("Received last frame!\n");
return 1; // 最后一帧,解析完成
}
return 0; // 成功解析一帧,但可能还有更多帧
}
// 边读取边解析串口数据
int parse_serial_data(by_serial_t *serial_port, by_ringbuf_t *ringbuf, uint8_t *output_data, int *output_len) {
uint8_t buffer[FRAME_SIZE];
int ret;
// 从串口读取数据到环形缓冲区
ret = by_serial_read(serial_port, buffer, FRAME_SIZE);
if (ret > 0) {
by_ringbuf_append(ringbuf, buffer, ret);
}
// 尝试解析环形缓冲区中的数据
while (1) {
int parse_result = parse_frame(ringbuf, output_data, output_len);
if (parse_result == 1) {
return 0; // 解析完成
} else if (parse_result == -1) {
break; // 数据不足或解析失败,退出循环
}
}
return -1; // 未找到完整帧
}
// 初始化串口
static PyObject *serial_init(PyObject *self, PyObject *args) {
const char *dev_name;
if (!PyArg_ParseTuple(args, "s", &dev_name)) {
return NULL;
}
if (by_serial_init(&serial_port, dev_name) != 0) {
PyErr_SetString(PyExc_IOError, "Failed to initialize serial port");
return NULL;
}
// 初始化环形缓冲区
if (by_ringbuf_init(&ring_buffer, RING_BUFFER_SIZE) != 0) {
PyErr_SetString(PyExc_IOError, "Failed to initialize ring buffer");
return NULL;
}
frame_counter = 0; // 重置帧计数器
Py_RETURN_NONE;
}
// 发送数据
static PyObject *serial_send(PyObject *self, PyObject *args) {
const char *data;
Py_ssize_t length;
if (!PyArg_ParseTuple(args, "s#", &data, &length)) {
return NULL;
}
printf("Send data len = %ld\n", length);
size_t offset = 0;
uint8_t idx = 0;
while (offset < length) {
memset(send_buffer, 0, FRAME_SIZE);
// 构造帧头
uint16_t header = FRAME_HEADER;
memcpy(send_buffer, &header, 2);
// 构造帧序号
memcpy(send_buffer + 2, &frame_counter, 1);
// 构造数据长度
if (length - offset > DATA_SIZE) {
data_len = DATA_SIZE;
} else {
data_len = length - offset;
}
memcpy(send_buffer + 3, &data_len, 1);
// 拷贝该帧对应数据段
memcpy(send_buffer + HEADER_SIZE, data + offset, data_len);
#ifdef USE_FEC
// 将 FEC 数据附加到帧中
memcpy(send_buffer + HEADER_SIZE + DATA_SIZE, fec_data, 32);
#endif
// 计算 CRC32 校验和
uint32_t crc = calculate_crc32(send_buffer, HEADER_SIZE + DATA_SIZE + FEC_SIZE);
memcpy(send_buffer + HEADER_SIZE + DATA_SIZE + FEC_SIZE, &crc, CHECKSUM_SIZE);
for(uint8_t i = 0; i < FRAME_SIZE; i++) {
printf("%02x ", send_buffer[i]);
}
// 发送帧
if (by_serial_write(&serial_port, (const char *)send_buffer, FRAME_SIZE) != 0) {
PyErr_SetString(PyExc_IOError, "Failed to send data over serial port");
return NULL;
}
offset += DATA_SIZE;
frame_counter++;
printf("* frame [%d]\n", frame_counter);
// usleep(50000);
usleep(80000);
}
frame_counter = 0;
printf("****************\n");
Py_RETURN_NONE;
}
// 接收数据
static PyObject *serial_receive(PyObject *self, PyObject *args) {
uint8_t output_data[8192];
int output_len = 0;
int timeout = 5000; // 超时时间,单位为毫秒
int elapsed_time = 0;
// TODO 增加当接收新帧时的处理
while (elapsed_time < timeout) {
if (parse_serial_data(&serial_port, &ring_buffer, output_data, &output_len) == 0) {
// 返回解析后的数据
printf("Parsed data length: %d\n", output_len);
return Py_BuildValue("y#", output_data, output_len);
}
usleep(1000); // 等待 1 毫秒
elapsed_time += 1;
}
// 超时未接收到完整帧
PyErr_SetString(PyExc_TimeoutError, "Timeout while waiting for data");
return NULL;
}
// 模块方法表
static PyMethodDef SerialMethods[] = {
{"init", serial_init, METH_VARARGS, "Initialize serial port"},
{"send", serial_send, METH_VARARGS, "Send data over serial port"},
{"receive", serial_receive, METH_VARARGS, "Receive data from serial port"},
{NULL, NULL, 0, NULL}};
// 模块定义
static struct PyModuleDef serialmodule = {
PyModuleDef_HEAD_INIT,
"serial_module",
NULL,
-1,
SerialMethods};
// 模块初始化函数
PyMODINIT_FUNC PyInit_serial_module(void) {
return PyModule_Create(&serialmodule);
}

BIN
test_recv.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

21
test_recv.py Normal file
View File

@@ -0,0 +1,21 @@
import serial_module
import cv2
import numpy as np
serial_module.init("/dev/ttyUSB1")
while True:
try:
data = serial_module.receive()
# print("Received data:", data)
if data:
frame = np.frombuffer(data, np.uint8)
# 将数据转换为图像
image = cv2.imdecode(frame, cv2.IMREAD_COLOR)
# 显示图像
cv2.imshow('Received Image', image)
cv2.imwrite('test_recv.jpg', image)
# 等待按键输入
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except Exception as e:
print("Error:", e)

BIN
test_send.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.8 KiB

43
test_send.py Normal file
View File

@@ -0,0 +1,43 @@
import serial_module
import cv2
import time
# 初始化串口
serial_module.init("/dev/ttyUSB0")
cap = cv2.VideoCapture(0)
# while True:
for _ in range(100):
time_via = time.time()
ret, frame = cap.read()
frame = cv2.resize(frame, (224,224))
cv2.imshow('frame',frame)
frame_jpg = cv2.imencode('.jpg', frame, [int(cv2.IMWRITE_JPEG_QUALITY), 50])[1].tobytes()
print(len(frame_jpg))
serial_module.send(frame_jpg)
cv2.imwrite('test_send.jpg', frame)
# # 创建一个大小为 3.5K 的二进制数据
# file_size = int(3.5 * 1024)
# empty_binary_data = bytearray(file_size)
# empty_binary_data = bytes(empty_binary_data)
# # 发送数据
# serial_module.send(empty_binary_data)
print(time.time() - time_via)
time.sleep(4)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# # 发送数据
# data = b"Your binary data here" # 替换为你的二进制数据
# serial_module.send(data)
# # 接收数据
# result = serial_module.receive()
# if result:
# frame_number, pdu, rssi = result
# print(f"Frame Number: {frame_number}")
# print(f"PDU: {pdu}")
# print(f"RSSI: {rssi}")

BIN
tool_capserial Executable file

Binary file not shown.

77
tool_capserial.c Normal file
View File

@@ -0,0 +1,77 @@
#include "hx_serial.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define BUFFER_SIZE 1024
#define OUTPUT_FILE "serial_data.txt"
int main() {
by_serial_t serial_port;
char buffer[BUFFER_SIZE];
int bytes_read;
int total_bytes_read = 0;
FILE *output_file;
// 初始化串口
if (by_serial_init(&serial_port, "/dev/ttyUSB1") != 0) {
fprintf(stderr, "Failed to initialize serial port\n");
return -1;
}
by_serial_set_baudrate(&serial_port, 115200);
by_serial_set_parity(&serial_port, 8, 1, 'N');
// 打开输出文件
output_file = fopen(OUTPUT_FILE, "wb");
if (output_file == NULL) {
fprintf(stderr, "Failed to open output file\n");
close(serial_port.fd);
return -1;
}
printf("Reading from serial port. Press ENTER to stop...\n");
// 循环读取串口数据
while (1) {
// // 检查用户输入
// if (fgetc(stdin) == '\n') {
// break;
// }
// 检查缓冲区中是否有数据
int used_len = by_serial_get_used_buffer_len(&serial_port);
if (used_len <= 0) {
usleep(100000); // 等待 100ms
// printf("no data\n");
continue;
}else{
printf("used_len = %d; ", used_len);
}
// 读取数据
bytes_read = by_serial_read(&serial_port, buffer, BUFFER_SIZE);
if (bytes_read < 0) {
fprintf(stderr, "Error reading from serial port\n");
break;
}
total_bytes_read += bytes_read;
printf("Total bytes read: %d\n", total_bytes_read);
// 将数据以 ASCII 格式写入文件
// fwrite(buffer, 1, bytes_read, output_file);
for (int i = 0; i < bytes_read; i++) {
fprintf(output_file, "%02X ", (unsigned char)buffer[i]);
}
fprintf(stderr, "Wrote %d bytes to file\n", bytes_read);
}
// 关闭文件和串口
fclose(output_file);
close(serial_port.fd);
printf("Data capture stopped. Data saved to %s\n", OUTPUT_FILE);
return 0;
}

33
tool_ckframe.py Normal file
View File

@@ -0,0 +1,33 @@
def calculate_frame_lengths(file_content):
# 将文件内容转换为十六进制字节列表
hex_data = file_content.split()
frame_lengths = []
frame_start = 0
# 遍历字节列表,查找帧头
for i in range(len(hex_data) - 1):
if hex_data[i] == '55' and hex_data[i + 1] == 'AA':
# 找到帧头,计算当前帧的长度
if frame_start != 0:
frame_length = i - frame_start
frame_lengths.append(frame_length)
frame_start = i
# 处理最后一帧
if frame_start != 0:
frame_length = len(hex_data) - frame_start
frame_lengths.append(frame_length)
return frame_lengths
# 读取文件内容
with open('serial_data.txt', 'r') as file:
file_content = file.read()
# 计算每一帧的长度
frame_lengths = calculate_frame_lengths(file_content)
# 输出每一帧的长度
for i, length in enumerate(frame_lengths):
print(f"Frame {i + 1}: Length = {length} bytes")