test modify swiftformer to temporal input
This commit is contained in:
209
util/video_dataset.py
Normal file
209
util/video_dataset.py
Normal file
@@ -0,0 +1,209 @@
|
||||
"""
|
||||
Video frame dataset for temporal self-supervised learning
|
||||
"""
|
||||
import os
|
||||
import random
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple, List
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision import transforms
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
|
||||
class VideoFrameDataset(Dataset):
|
||||
"""
|
||||
Dataset for loading consecutive frames from videos for frame prediction.
|
||||
|
||||
Assumes directory structure:
|
||||
dataset_root/
|
||||
video1/
|
||||
frame_0001.jpg
|
||||
frame_0002.jpg
|
||||
...
|
||||
video2/
|
||||
...
|
||||
"""
|
||||
def __init__(self,
|
||||
root_dir: str,
|
||||
num_frames: int = 3,
|
||||
frame_size: int = 224,
|
||||
is_train: bool = True,
|
||||
max_interval: int = 1,
|
||||
transform=None):
|
||||
"""
|
||||
Args:
|
||||
root_dir: Root directory containing video folders
|
||||
num_frames: Number of input frames (T)
|
||||
frame_size: Size to resize frames to
|
||||
is_train: Whether this is training set (affects augmentation)
|
||||
max_interval: Maximum interval between consecutive frames
|
||||
transform: Optional custom transform
|
||||
"""
|
||||
self.root_dir = Path(root_dir)
|
||||
self.num_frames = num_frames
|
||||
self.frame_size = frame_size
|
||||
self.is_train = is_train
|
||||
self.max_interval = max_interval
|
||||
|
||||
# Collect all video folders
|
||||
self.video_folders = []
|
||||
for item in self.root_dir.iterdir():
|
||||
if item.is_dir():
|
||||
self.video_folders.append(item)
|
||||
|
||||
if len(self.video_folders) == 0:
|
||||
raise ValueError(f"No video folders found in {root_dir}")
|
||||
|
||||
# Build frame index: list of (video_idx, start_frame_idx)
|
||||
self.frame_indices = []
|
||||
for video_idx, video_folder in enumerate(self.video_folders):
|
||||
# Get all frame files
|
||||
frame_files = sorted([f for f in video_folder.iterdir()
|
||||
if f.suffix.lower() in ['.jpg', '.jpeg', '.png', '.bmp']])
|
||||
|
||||
if len(frame_files) < num_frames + 1:
|
||||
continue # Skip videos with insufficient frames
|
||||
|
||||
# Add all possible starting positions
|
||||
for start_idx in range(len(frame_files) - num_frames):
|
||||
self.frame_indices.append((video_idx, start_idx))
|
||||
|
||||
if len(self.frame_indices) == 0:
|
||||
raise ValueError("No valid frame sequences found in dataset")
|
||||
|
||||
# Default transforms
|
||||
if transform is None:
|
||||
self.transform = self._default_transform()
|
||||
else:
|
||||
self.transform = transform
|
||||
|
||||
# Normalization (ImageNet stats)
|
||||
self.normalize = transforms.Normalize(
|
||||
mean=[0.485, 0.456, 0.406],
|
||||
std=[0.229, 0.224, 0.225]
|
||||
)
|
||||
|
||||
def _default_transform(self):
|
||||
"""Default transform with augmentation for training"""
|
||||
if self.is_train:
|
||||
return transforms.Compose([
|
||||
transforms.RandomResizedCrop(self.frame_size, scale=(0.8, 1.0)),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
|
||||
])
|
||||
else:
|
||||
return transforms.Compose([
|
||||
transforms.Resize(int(self.frame_size * 1.14)),
|
||||
transforms.CenterCrop(self.frame_size),
|
||||
])
|
||||
|
||||
def _load_frame(self, video_idx: int, frame_idx: int) -> Image.Image:
|
||||
"""Load a single frame as PIL Image"""
|
||||
video_folder = self.video_folders[video_idx]
|
||||
frame_files = sorted([f for f in video_folder.iterdir()
|
||||
if f.suffix.lower() in ['.jpg', '.jpeg', '.png', '.bmp']])
|
||||
frame_path = frame_files[frame_idx]
|
||||
return Image.open(frame_path).convert('RGB')
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.frame_indices)
|
||||
|
||||
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Returns:
|
||||
input_frames: [3 * num_frames, H, W] concatenated input frames
|
||||
target_frame: [3, H, W] target frame to predict
|
||||
temporal_idx: temporal index of target frame (for contrastive loss)
|
||||
"""
|
||||
video_idx, start_idx = self.frame_indices[idx]
|
||||
|
||||
# Determine frame interval (for temporal augmentation)
|
||||
interval = random.randint(1, self.max_interval) if self.is_train else 1
|
||||
|
||||
# Load input frames
|
||||
input_frames = []
|
||||
for i in range(self.num_frames):
|
||||
frame_idx = start_idx + i * interval
|
||||
frame = self._load_frame(video_idx, frame_idx)
|
||||
|
||||
# Apply transform (same for all frames in sequence)
|
||||
if self.transform:
|
||||
frame = self.transform(frame)
|
||||
|
||||
input_frames.append(frame)
|
||||
|
||||
# Load target frame (next frame after input sequence)
|
||||
target_idx = start_idx + self.num_frames * interval
|
||||
target_frame = self._load_frame(video_idx, target_idx)
|
||||
if self.transform:
|
||||
target_frame = self.transform(target_frame)
|
||||
|
||||
# Convert to tensors and normalize
|
||||
input_tensors = []
|
||||
for frame in input_frames:
|
||||
tensor = transforms.ToTensor()(frame)
|
||||
tensor = self.normalize(tensor)
|
||||
input_tensors.append(tensor)
|
||||
|
||||
target_tensor = transforms.ToTensor()(target_frame)
|
||||
target_tensor = self.normalize(target_tensor)
|
||||
|
||||
# Concatenate input frames along channel dimension
|
||||
input_concatenated = torch.cat(input_tensors, dim=0)
|
||||
|
||||
# Temporal index (for contrastive loss)
|
||||
temporal_idx = torch.tensor(self.num_frames, dtype=torch.long)
|
||||
|
||||
return input_concatenated, target_tensor, temporal_idx
|
||||
|
||||
|
||||
class SyntheticVideoDataset(Dataset):
|
||||
"""
|
||||
Synthetic dataset for testing - generates random frames
|
||||
"""
|
||||
def __init__(self,
|
||||
num_samples: int = 1000,
|
||||
num_frames: int = 3,
|
||||
frame_size: int = 224,
|
||||
is_train: bool = True):
|
||||
self.num_samples = num_samples
|
||||
self.num_frames = num_frames
|
||||
self.frame_size = frame_size
|
||||
self.is_train = is_train
|
||||
|
||||
# Normalization
|
||||
self.normalize = transforms.Normalize(
|
||||
mean=[0.485, 0.456, 0.406],
|
||||
std=[0.229, 0.224, 0.225]
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
def __getitem__(self, idx):
|
||||
# Generate random "frames" (noise with temporal correlation)
|
||||
input_frames = []
|
||||
prev_frame = torch.randn(3, self.frame_size, self.frame_size) * 0.1
|
||||
|
||||
for i in range(self.num_frames):
|
||||
# Add some temporal correlation
|
||||
frame = prev_frame + torch.randn(3, self.frame_size, self.frame_size) * 0.05
|
||||
frame = torch.clamp(frame, -1, 1)
|
||||
input_frames.append(self.normalize(frame))
|
||||
prev_frame = frame
|
||||
|
||||
# Target frame (next in sequence)
|
||||
target_frame = prev_frame + torch.randn(3, self.frame_size, self.frame_size) * 0.05
|
||||
target_frame = torch.clamp(target_frame, -1, 1)
|
||||
target_tensor = self.normalize(target_frame)
|
||||
|
||||
# Concatenate inputs
|
||||
input_concatenated = torch.cat(input_frames, dim=0)
|
||||
|
||||
# Temporal index
|
||||
temporal_idx = torch.tensor(self.num_frames, dtype=torch.long)
|
||||
|
||||
return input_concatenated, target_tensor, temporal_idx
|
||||
Reference in New Issue
Block a user