update README.md
This commit is contained in:
@@ -25,9 +25,6 @@ SwiftFormer_depth = {
|
||||
'l3': [4, 4, 12, 6],
|
||||
}
|
||||
|
||||
CoreMLConversion = False
|
||||
|
||||
|
||||
def stem(in_chs, out_chs):
|
||||
"""
|
||||
Stem Layer that is implemented by two layers of conv.
|
||||
@@ -144,8 +141,8 @@ class Mlp(nn.Module):
|
||||
class EfficientAdditiveAttnetion(nn.Module):
|
||||
"""
|
||||
Efficient Additive Attention module for SwiftFormer.
|
||||
Input: tensor in shape [B, C, H, W]
|
||||
Output: tensor in shape [B, C, H, W]
|
||||
Input: tensor in shape [B, N, D]
|
||||
Output: tensor in shape [B, N, D]
|
||||
"""
|
||||
|
||||
def __init__(self, in_dims=512, token_dim=256, num_heads=2):
|
||||
@@ -163,26 +160,23 @@ class EfficientAdditiveAttnetion(nn.Module):
|
||||
query = self.to_query(x)
|
||||
key = self.to_key(x)
|
||||
|
||||
if not CoreMLConversion:
|
||||
# torch.nn.functional.normalize is not supported by the ANE of iPhone devices.
|
||||
# Using this layer improves the accuracy by ~0.1-0.2%
|
||||
query = torch.nn.functional.normalize(query, dim=-1)
|
||||
key = torch.nn.functional.normalize(key, dim=-1)
|
||||
query = torch.nn.functional.normalize(query, dim=-1) #BxNxD
|
||||
key = torch.nn.functional.normalize(key, dim=-1) #BxNxD
|
||||
|
||||
query_weight = query @ self.w_g
|
||||
A = query_weight * self.scale_factor
|
||||
query_weight = query @ self.w_g # BxNx1 (BxNxD @ Dx1)
|
||||
A = query_weight * self.scale_factor # BxNx1
|
||||
|
||||
A = A.softmax(dim=-1)
|
||||
A = torch.nn.functional.normalize(A, dim=1) # BxNx1
|
||||
|
||||
G = torch.sum(A * query, dim=1)
|
||||
G = torch.sum(A * query, dim=1) # BxD
|
||||
|
||||
G = einops.repeat(
|
||||
G, "b d -> b repeat d", repeat=key.shape[1]
|
||||
)
|
||||
) # BxNxD
|
||||
|
||||
out = self.Proj(G * key) + query
|
||||
out = self.Proj(G * key) + query #BxNxD
|
||||
|
||||
out = self.final(out)
|
||||
out = self.final(out) # BxNxD
|
||||
|
||||
return out
|
||||
|
||||
@@ -215,6 +209,7 @@ class SwiftFormerLocalRepresentation(nn.Module):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x):
|
||||
print("SwiftFormerLocalRepresentation input is ", x.shape)
|
||||
input = x
|
||||
x = self.dwconv(x)
|
||||
x = self.norm(x)
|
||||
@@ -225,6 +220,7 @@ class SwiftFormerLocalRepresentation(nn.Module):
|
||||
x = input + self.drop_path(self.layer_scale * x)
|
||||
else:
|
||||
x = input + self.drop_path(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
@@ -505,3 +501,4 @@ def SwiftFormer_L3(pretrained=False, **kwargs):
|
||||
**kwargs)
|
||||
model.default_cfg = _cfg(crop_pct=0.9)
|
||||
return model
|
||||
|
||||
|
||||
Reference in New Issue
Block a user