# Copyright (c) 2022-2025, The Isaac Lab Project Developers. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """Script to play a checkpoint if an RL agent from RSL-RL.""" """Launch Isaac Sim Simulator first.""" import argparse from isaaclab.app import AppLauncher # local imports import cli_args # isort: skip # add argparse arguments parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.") parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.") parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument( "--use_pretrained_checkpoint", action="store_true", help="Use the pre-trained checkpoint from Nucleus.", ) parser.add_argument("--real-time", action="store_true", default=False, help="Run in real-time, if possible.") # append RSL-RL cli arguments cli_args.add_rsl_rl_args(parser) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) args_cli = parser.parse_args() # always enable cameras to record video if args_cli.video: args_cli.enable_cameras = True # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os import time import torch from rsl_rl.runners import OnPolicyRunner from isaaclab.envs import DirectMARLEnv, multi_agent_to_single_agent from isaaclab.utils.assets import retrieve_file_path from isaaclab.utils.dict import print_dict from isaaclab.utils.pretrained_checkpoint import get_published_pretrained_checkpoint from isaaclab_rl.rsl_rl import RslRlOnPolicyRunnerCfg, RslRlVecEnvWrapper, export_policy_as_jit, export_policy_as_onnx import isaaclab_tasks # noqa: F401 from isaaclab_tasks.utils import get_checkpoint_path, parse_env_cfg import FLEXR_v0.tasks # noqa: F401 def main(): """Play with RSL-RL agent.""" # parse configuration env_cfg = parse_env_cfg( args_cli.task, device=args_cli.device, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric ) agent_cfg: RslRlOnPolicyRunnerCfg = cli_args.parse_rsl_rl_cfg(args_cli.task, args_cli) # specify directory for logging experiments log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Loading experiment from directory: {log_root_path}") if args_cli.use_pretrained_checkpoint: resume_path = get_published_pretrained_checkpoint("rsl_rl", args_cli.task) if not resume_path: print("[INFO] Unfortunately a pre-trained checkpoint is currently unavailable for this task.") return elif args_cli.checkpoint: resume_path = retrieve_file_path(args_cli.checkpoint) else: resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint) log_dir = os.path.dirname(resume_path) # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None) # convert to single-agent instance if required by the RL algorithm if isinstance(env.unwrapped, DirectMARLEnv): env = multi_agent_to_single_agent(env) # wrap for video recording if args_cli.video: video_kwargs = { "video_folder": os.path.join(log_dir, "videos", "play"), "step_trigger": lambda step: step == 0, "video_length": args_cli.video_length, "disable_logger": True, } print("[INFO] Recording videos during training.") print_dict(video_kwargs, nesting=4) env = gym.wrappers.RecordVideo(env, **video_kwargs) # wrap around environment for rsl-rl env = RslRlVecEnvWrapper(env, clip_actions=agent_cfg.clip_actions) print(f"[INFO]: Loading model checkpoint from: {resume_path}") # load previously trained model ppo_runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=None, device=agent_cfg.device) ppo_runner.load(resume_path) # obtain the trained policy for inference policy = ppo_runner.get_inference_policy(device=env.unwrapped.device) # extract the neural network module # we do this in a try-except to maintain backwards compatibility. try: # version 2.3 onwards policy_nn = ppo_runner.alg.policy except AttributeError: # version 2.2 and below policy_nn = ppo_runner.alg.actor_critic # export policy to onnx/jit export_model_dir = os.path.join(os.path.dirname(resume_path), "exported") export_policy_as_jit(policy_nn, ppo_runner.obs_normalizer, path=export_model_dir, filename="policy.pt") export_policy_as_onnx( policy_nn, normalizer=ppo_runner.obs_normalizer, path=export_model_dir, filename="policy.onnx" ) dt = env.unwrapped.step_dt # reset environment obs, _ = env.get_observations() timestep = 0 # simulate environment while simulation_app.is_running(): start_time = time.time() # run everything in inference mode with torch.inference_mode(): # agent stepping actions = policy(obs) # env stepping obs, _, _, _ = env.step(actions) if args_cli.video: timestep += 1 # Exit the play loop after recording one video if timestep == args_cli.video_length: break # time delay for real-time evaluation sleep_time = dt - (time.time() - start_time) if args_cli.real_time and sleep_time > 0: time.sleep(sleep_time) # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()