initial commit

This commit is contained in:
CaoWangrenbo
2025-06-14 21:18:24 +08:00
commit b03507ab4e
35 changed files with 2349 additions and 0 deletions

207
scripts/rl_games/play.py Normal file
View File

@@ -0,0 +1,207 @@
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Script to play a checkpoint if an RL agent from RL-Games."""
"""Launch Isaac Sim Simulator first."""
import argparse
from isaaclab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="Play a checkpoint of an RL agent from RL-Games.")
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
parser.add_argument(
"--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations."
)
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint.")
parser.add_argument(
"--use_pretrained_checkpoint",
action="store_true",
help="Use the pre-trained checkpoint from Nucleus.",
)
parser.add_argument(
"--use_last_checkpoint",
action="store_true",
help="When no checkpoint provided, use the last saved model. Otherwise use the best saved model.",
)
parser.add_argument("--real-time", action="store_true", default=False, help="Run in real-time, if possible.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli = parser.parse_args()
# always enable cameras to record video
if args_cli.video:
args_cli.enable_cameras = True
# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import gymnasium as gym
import math
import os
import time
import torch
from rl_games.common import env_configurations, vecenv
from rl_games.common.player import BasePlayer
from rl_games.torch_runner import Runner
from isaaclab.envs import DirectMARLEnv, multi_agent_to_single_agent
from isaaclab.utils.assets import retrieve_file_path
from isaaclab.utils.dict import print_dict
from isaaclab.utils.pretrained_checkpoint import get_published_pretrained_checkpoint
from isaaclab_rl.rl_games import RlGamesGpuEnv, RlGamesVecEnvWrapper
import isaaclab_tasks # noqa: F401
from isaaclab_tasks.utils import get_checkpoint_path, load_cfg_from_registry, parse_env_cfg
import FLEXR_v0.tasks # noqa: F401
def main():
"""Play with RL-Games agent."""
# parse env configuration
env_cfg = parse_env_cfg(
args_cli.task, device=args_cli.device, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric
)
agent_cfg = load_cfg_from_registry(args_cli.task, "rl_games_cfg_entry_point")
# specify directory for logging experiments
log_root_path = os.path.join("logs", "rl_games", agent_cfg["params"]["config"]["name"])
log_root_path = os.path.abspath(log_root_path)
print(f"[INFO] Loading experiment from directory: {log_root_path}")
# find checkpoint
if args_cli.use_pretrained_checkpoint:
resume_path = get_published_pretrained_checkpoint("rl_games", args_cli.task)
if not resume_path:
print("[INFO] Unfortunately a pre-trained checkpoint is currently unavailable for this task.")
return
elif args_cli.checkpoint is None:
# specify directory for logging runs
run_dir = agent_cfg["params"]["config"].get("full_experiment_name", ".*")
# specify name of checkpoint
if args_cli.use_last_checkpoint:
checkpoint_file = ".*"
else:
# this loads the best checkpoint
checkpoint_file = f"{agent_cfg['params']['config']['name']}.pth"
# get path to previous checkpoint
resume_path = get_checkpoint_path(log_root_path, run_dir, checkpoint_file, other_dirs=["nn"])
else:
resume_path = retrieve_file_path(args_cli.checkpoint)
log_dir = os.path.dirname(os.path.dirname(resume_path))
# wrap around environment for rl-games
rl_device = agent_cfg["params"]["config"]["device"]
clip_obs = agent_cfg["params"]["env"].get("clip_observations", math.inf)
clip_actions = agent_cfg["params"]["env"].get("clip_actions", math.inf)
# create isaac environment
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
# convert to single-agent instance if required by the RL algorithm
if isinstance(env.unwrapped, DirectMARLEnv):
env = multi_agent_to_single_agent(env)
# wrap for video recording
if args_cli.video:
video_kwargs = {
"video_folder": os.path.join(log_root_path, log_dir, "videos", "play"),
"step_trigger": lambda step: step == 0,
"video_length": args_cli.video_length,
"disable_logger": True,
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
env = gym.wrappers.RecordVideo(env, **video_kwargs)
# wrap around environment for rl-games
env = RlGamesVecEnvWrapper(env, rl_device, clip_obs, clip_actions)
# register the environment to rl-games registry
# note: in agents configuration: environment name must be "rlgpu"
vecenv.register(
"IsaacRlgWrapper", lambda config_name, num_actors, **kwargs: RlGamesGpuEnv(config_name, num_actors, **kwargs)
)
env_configurations.register("rlgpu", {"vecenv_type": "IsaacRlgWrapper", "env_creator": lambda **kwargs: env})
# load previously trained model
agent_cfg["params"]["load_checkpoint"] = True
agent_cfg["params"]["load_path"] = resume_path
print(f"[INFO]: Loading model checkpoint from: {agent_cfg['params']['load_path']}")
# set number of actors into agent config
agent_cfg["params"]["config"]["num_actors"] = env.unwrapped.num_envs
# create runner from rl-games
runner = Runner()
runner.load(agent_cfg)
# obtain the agent from the runner
agent: BasePlayer = runner.create_player()
agent.restore(resume_path)
agent.reset()
dt = env.unwrapped.step_dt
# reset environment
obs = env.reset()
if isinstance(obs, dict):
obs = obs["obs"]
timestep = 0
# required: enables the flag for batched observations
_ = agent.get_batch_size(obs, 1)
# initialize RNN states if used
if agent.is_rnn:
agent.init_rnn()
# simulate environment
# note: We simplified the logic in rl-games player.py (:func:`BasePlayer.run()`) function in an
# attempt to have complete control over environment stepping. However, this removes other
# operations such as masking that is used for multi-agent learning by RL-Games.
while simulation_app.is_running():
start_time = time.time()
# run everything in inference mode
with torch.inference_mode():
# convert obs to agent format
obs = agent.obs_to_torch(obs)
# agent stepping
actions = agent.get_action(obs, is_deterministic=agent.is_deterministic)
# env stepping
obs, _, dones, _ = env.step(actions)
# perform operations for terminated episodes
if len(dones) > 0:
# reset rnn state for terminated episodes
if agent.is_rnn and agent.states is not None:
for s in agent.states:
s[:, dones, :] = 0.0
if args_cli.video:
timestep += 1
# Exit the play loop after recording one video
if timestep == args_cli.video_length:
break
# time delay for real-time evaluation
sleep_time = dt - (time.time() - start_time)
if args_cli.real_time and sleep_time > 0:
time.sleep(sleep_time)
# close the simulator
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()

184
scripts/rl_games/train.py Normal file
View File

@@ -0,0 +1,184 @@
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Script to train RL agent with RL-Games."""
"""Launch Isaac Sim Simulator first."""
import argparse
import sys
from isaaclab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="Train an RL agent with RL-Games.")
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
parser.add_argument(
"--distributed", action="store_true", default=False, help="Run training with multiple GPUs or nodes."
)
parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint.")
parser.add_argument("--sigma", type=str, default=None, help="The policy's initial standard deviation.")
parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli, hydra_args = parser.parse_known_args()
# always enable cameras to record video
if args_cli.video:
args_cli.enable_cameras = True
# clear out sys.argv for Hydra
sys.argv = [sys.argv[0]] + hydra_args
# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import gymnasium as gym
import math
import os
import random
from datetime import datetime
from rl_games.common import env_configurations, vecenv
from rl_games.common.algo_observer import IsaacAlgoObserver
from rl_games.torch_runner import Runner
from isaaclab.envs import (
DirectMARLEnv,
DirectMARLEnvCfg,
DirectRLEnvCfg,
ManagerBasedRLEnvCfg,
multi_agent_to_single_agent,
)
from isaaclab.utils.assets import retrieve_file_path
from isaaclab.utils.dict import print_dict
from isaaclab.utils.io import dump_pickle, dump_yaml
from isaaclab_rl.rl_games import RlGamesGpuEnv, RlGamesVecEnvWrapper
import isaaclab_tasks # noqa: F401
from isaaclab_tasks.utils.hydra import hydra_task_config
import FLEXR_v0.tasks # noqa: F401
@hydra_task_config(args_cli.task, "rl_games_cfg_entry_point")
def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
"""Train with RL-Games agent."""
# override configurations with non-hydra CLI arguments
env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
# randomly sample a seed if seed = -1
if args_cli.seed == -1:
args_cli.seed = random.randint(0, 10000)
agent_cfg["params"]["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["params"]["seed"]
agent_cfg["params"]["config"]["max_epochs"] = (
args_cli.max_iterations if args_cli.max_iterations is not None else agent_cfg["params"]["config"]["max_epochs"]
)
if args_cli.checkpoint is not None:
resume_path = retrieve_file_path(args_cli.checkpoint)
agent_cfg["params"]["load_checkpoint"] = True
agent_cfg["params"]["load_path"] = resume_path
print(f"[INFO]: Loading model checkpoint from: {agent_cfg['params']['load_path']}")
train_sigma = float(args_cli.sigma) if args_cli.sigma is not None else None
# multi-gpu training config
if args_cli.distributed:
agent_cfg["params"]["seed"] += app_launcher.global_rank
agent_cfg["params"]["config"]["device"] = f"cuda:{app_launcher.local_rank}"
agent_cfg["params"]["config"]["device_name"] = f"cuda:{app_launcher.local_rank}"
agent_cfg["params"]["config"]["multi_gpu"] = True
# update env config device
env_cfg.sim.device = f"cuda:{app_launcher.local_rank}"
# set the environment seed (after multi-gpu config for updated rank from agent seed)
# note: certain randomizations occur in the environment initialization so we set the seed here
env_cfg.seed = agent_cfg["params"]["seed"]
# specify directory for logging experiments
log_root_path = os.path.join("logs", "rl_games", agent_cfg["params"]["config"]["name"])
log_root_path = os.path.abspath(log_root_path)
print(f"[INFO] Logging experiment in directory: {log_root_path}")
# specify directory for logging runs
log_dir = agent_cfg["params"]["config"].get("full_experiment_name", datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
# set directory into agent config
# logging directory path: <train_dir>/<full_experiment_name>
agent_cfg["params"]["config"]["train_dir"] = log_root_path
agent_cfg["params"]["config"]["full_experiment_name"] = log_dir
# dump the configuration into log-directory
dump_yaml(os.path.join(log_root_path, log_dir, "params", "env.yaml"), env_cfg)
dump_yaml(os.path.join(log_root_path, log_dir, "params", "agent.yaml"), agent_cfg)
dump_pickle(os.path.join(log_root_path, log_dir, "params", "env.pkl"), env_cfg)
dump_pickle(os.path.join(log_root_path, log_dir, "params", "agent.pkl"), agent_cfg)
# read configurations about the agent-training
rl_device = agent_cfg["params"]["config"]["device"]
clip_obs = agent_cfg["params"]["env"].get("clip_observations", math.inf)
clip_actions = agent_cfg["params"]["env"].get("clip_actions", math.inf)
# create isaac environment
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
# convert to single-agent instance if required by the RL algorithm
if isinstance(env.unwrapped, DirectMARLEnv):
env = multi_agent_to_single_agent(env)
# wrap for video recording
if args_cli.video:
video_kwargs = {
"video_folder": os.path.join(log_root_path, log_dir, "videos", "train"),
"step_trigger": lambda step: step % args_cli.video_interval == 0,
"video_length": args_cli.video_length,
"disable_logger": True,
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
env = gym.wrappers.RecordVideo(env, **video_kwargs)
# wrap around environment for rl-games
env = RlGamesVecEnvWrapper(env, rl_device, clip_obs, clip_actions)
# register the environment to rl-games registry
# note: in agents configuration: environment name must be "rlgpu"
vecenv.register(
"IsaacRlgWrapper", lambda config_name, num_actors, **kwargs: RlGamesGpuEnv(config_name, num_actors, **kwargs)
)
env_configurations.register("rlgpu", {"vecenv_type": "IsaacRlgWrapper", "env_creator": lambda **kwargs: env})
# set number of actors into agent config
agent_cfg["params"]["config"]["num_actors"] = env.unwrapped.num_envs
# create runner from rl-games
runner = Runner(IsaacAlgoObserver())
runner.load(agent_cfg)
# reset the agent and env
runner.reset()
# train the agent
if args_cli.checkpoint is not None:
runner.run({"train": True, "play": False, "sigma": train_sigma, "checkpoint": resume_path})
else:
runner.run({"train": True, "play": False, "sigma": train_sigma})
# close the simulator
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()