660 lines
30 KiB
Python
660 lines
30 KiB
Python
|
||
from enum import Enum
|
||
import numpy as np
|
||
import erniebot
|
||
from openai import OpenAI
|
||
from simple_pid import PID
|
||
from loguru import logger
|
||
import threading
|
||
|
||
# 巡线误差
|
||
lane_error = 0
|
||
# 进入任务时可以通过修改 task_speed 控制巡线速度
|
||
task_speed = 0
|
||
|
||
|
||
class tlabel(Enum):
|
||
TPLATFORM = 0
|
||
TOWER = 1
|
||
SIGN = 2
|
||
SHELTER = 3
|
||
HOSPITAL = 4
|
||
BASKET = 5
|
||
BASE = 6
|
||
YBALL = 7
|
||
SPILLER = 8
|
||
RMARK = 9
|
||
RBLOCK = 10
|
||
RBALL = 11
|
||
MPILLER = 12
|
||
LPILLER = 13
|
||
LMARK = 14
|
||
BBLOCK = 15
|
||
BBALL = 16
|
||
|
||
# 岔路口参数
|
||
direction = tlabel.RMARK
|
||
direction_left = 0
|
||
direction_right = 0
|
||
|
||
'''
|
||
description: label_filter 的测试数据
|
||
'''
|
||
test_resp = {
|
||
'code': 0,
|
||
'data': np.array([
|
||
[4., 0.97192055, 26.64415, 228.26755, 170.16872, 357.6216],
|
||
[4., 0.97049206, 474.0152, 251.2854, 612.91644, 381.6831],
|
||
[5., 0.972649, 250.84174, 238.43622, 378.115, 367.34906]
|
||
])
|
||
}
|
||
test1_resp = {
|
||
'code': 0,
|
||
'data': np.array([])
|
||
}
|
||
'''
|
||
description: yolo 目标检测标签过滤器,需要传入连接到 yolo server 的 socket 对象
|
||
'''
|
||
class label_filter:
|
||
def __init__(self, socket, threshold=0.5):
|
||
self.num = 0
|
||
self.pos = []
|
||
self.socket = socket
|
||
self.threshold = threshold
|
||
|
||
self.img_size = (320, 240)
|
||
'''
|
||
description: 向 yolo server 请求目标检测数据
|
||
param {*} self
|
||
return {*}
|
||
'''
|
||
def get_resp(self):
|
||
self.socket.send_string('')
|
||
response = self.socket.recv_pyobj()
|
||
return response
|
||
'''
|
||
description: 切换 yolo server 视频源 在分叉路口时目标检测需要使用前摄
|
||
param {*} self
|
||
param {*} camera_id 1 或者 2 字符串
|
||
return {*}
|
||
'''
|
||
def switch_camera(self,camera_id):
|
||
if camera_id == 1 or camera_id == 2:
|
||
self.socket.send_string(f'{camera_id}')
|
||
response = self.socket.recv_pyobj()
|
||
return response
|
||
'''
|
||
description: 对模型推理推理结果使用 threshold 过滤 默认阈值为 0.5
|
||
param {*} self
|
||
param {*} data get_resp 返回的数据
|
||
return {bool,array}
|
||
'''
|
||
def filter_box(self,data):
|
||
if len(data) > 0:
|
||
expect_boxes = (data[:, 1] > self.threshold) & (data[:, 0] > -1)
|
||
np_boxes = data[expect_boxes, :]
|
||
results = [
|
||
[
|
||
item[0], # 'label':
|
||
item[1], # 'score':
|
||
item[2], # 'xmin':
|
||
item[3], # 'ymin':
|
||
item[4], # 'xmax':
|
||
item[5] # 'ymax':
|
||
]
|
||
for item in np_boxes
|
||
]
|
||
if len(results) > 0:
|
||
return True, np.array(results)
|
||
return False, None
|
||
# '''
|
||
# description: 对模型推理推理结果使用 threshold 和其他条件过滤 默认阈值为 0.5
|
||
# param {*} self
|
||
# param {*} data get_resp 返回的数据
|
||
# return {bool,array}
|
||
# '''
|
||
# def filter_box_custom(self, data, ymax_range):
|
||
# if len(data) > 0:
|
||
# expect_boxes = (data[:, 1] > self.threshold) & (data[:, 0] > -1)
|
||
# np_boxes = data[expect_boxes, :]
|
||
# results = [
|
||
# [
|
||
# item[0], # 'label':
|
||
# item[1], # 'score':
|
||
# item[2], # 'xmin':
|
||
# item[3], # 'ymin':
|
||
# item[4], # 'xmax':
|
||
# item[5], # 'ymax':
|
||
# not (ymax_range[0] < item[3] < ymax_range[1]), # 如果 ymin 处在范围内则返回 False,认为该目标不符合要求
|
||
# not (ymax_range[0] < item[5] < ymax_range[1]) # 如果 ymax 处在范围内则返回 False,认为该目标不符合要求
|
||
# ]
|
||
# for item in np_boxes
|
||
# ]
|
||
# if len(results) > 0:
|
||
# return True, np.array(results)
|
||
# return False, None
|
||
|
||
#原来的函数
|
||
def filter_box_custom(self,data):
|
||
if len(data) > 0:
|
||
expect_boxes = (data[:, 1] > self.threshold) & (data[:, 0] > -1)
|
||
np_boxes = data[expect_boxes, :]
|
||
results = [
|
||
[
|
||
item[0], # 'label':
|
||
item[1], # 'score':
|
||
item[2], # 'xmin':
|
||
item[3], # 'ymin':
|
||
item[4], # 'xmax':
|
||
item[5] # 'ymax':
|
||
]
|
||
for item in np_boxes
|
||
if item[5] < 180
|
||
]
|
||
if len(results) > 0:
|
||
return True, np.array(results)
|
||
return False, None
|
||
'''
|
||
description: 根据传入的标签过滤,返回该标签的个数、box
|
||
param {*} self
|
||
param {*} tlabel
|
||
return {int, array}
|
||
'''
|
||
def get(self, tlabel):
|
||
# 循环查找匹配的标签值
|
||
# 返回对应标签的个数,以及坐标列表
|
||
response = self.get_resp()
|
||
if response['code'] == 0:
|
||
ret, results = self.filter_box(response['data'])
|
||
if ret:
|
||
expect_boxes = (results[:, 0] == tlabel.value)
|
||
boxes = results[expect_boxes, :]
|
||
self.num = len(boxes)
|
||
if self.num:
|
||
self.pos = boxes[:, 2:] # [[x1 y1 x2 y2]]
|
||
return True, self.pos
|
||
return False, []
|
||
'''
|
||
description: 仅限在岔路口判断方向牌处使用
|
||
param {*} self
|
||
param {*} tlabel_list
|
||
return {*}
|
||
'''
|
||
def get_mult_box(self, tlabel_list):
|
||
response = self.get_resp()
|
||
if response['code'] == 0:
|
||
ret, results = self.filter_box(response['data'])
|
||
except_label = None
|
||
if ret:
|
||
for tlabel in tlabel_list:
|
||
expect_boxes = (results[:, 0] == tlabel.value)
|
||
has_true = np.any(expect_boxes)
|
||
if has_true:
|
||
except_label = tlabel
|
||
box = results[expect_boxes, :][:, 2:][0]
|
||
error = (box[2] + box[0] - self.img_size[0]) / 2
|
||
break
|
||
if except_label != None:
|
||
return True, except_label, error
|
||
return False, None, None
|
||
def get_near_box(self, tlabel_list):
|
||
response = self.get_resp()
|
||
if response['code'] == 0:
|
||
ret, results = self.filter_box(response['data'])
|
||
except_label = []
|
||
abs_error_list = []
|
||
error_list = []
|
||
if ret:
|
||
for tlabel in tlabel_list:
|
||
expect_boxes = (results[:, 0] == tlabel.value)
|
||
has_true = np.any(expect_boxes)
|
||
if has_true:
|
||
except_label.append(tlabel)
|
||
box = results[expect_boxes, :][:, 2:][0]
|
||
error = (box[2] + box[0] - self.img_size[0]) / 2
|
||
abs_error_list.append(abs(error))
|
||
error_list.append(error)
|
||
if len(error_list) != 0:
|
||
abs_error_list = np.array(abs_error_list)
|
||
errormin_index = np.argmin(abs_error_list)
|
||
return True, except_label[errormin_index], error_list[errormin_index]
|
||
return False, None, None
|
||
return False, None, None
|
||
return False, None, None
|
||
'''
|
||
description: 判断传入的标签是否存在,存在返回 True
|
||
param {*} self
|
||
param {*} tlabel
|
||
return {bool}
|
||
'''
|
||
def find(self, tlabel):
|
||
response = self.get_resp()
|
||
if response['code'] == 0:
|
||
ret, results = self.filter_box(response['data'])
|
||
if ret:
|
||
expect_boxes = (results[:, 0] == tlabel.value)
|
||
boxes = results[expect_boxes, :]
|
||
if len(boxes) != 0:
|
||
return True
|
||
return False
|
||
'''
|
||
description: 查询两个目标 只有 target_label 返回 box
|
||
param {*} self
|
||
param {*} tlabel
|
||
return {[bool]}
|
||
'''
|
||
def get_two(self, target_label, label):
|
||
response = self.get_resp()
|
||
if response['code'] == 0:
|
||
ret, results = self.filter_box_custom(response['data'])
|
||
if ret:
|
||
expect_boxes = (results[:, 0] == target_label.value)
|
||
boxes = results[expect_boxes, :]
|
||
if len(boxes) != 0:
|
||
target_bool = True
|
||
target_box = boxes[:, 2:]
|
||
else:
|
||
target_bool = False
|
||
target_box = None
|
||
expect_boxes = (results[:, 0] == label.value)
|
||
boxes = results[expect_boxes, :]
|
||
if len(boxes) != 0:
|
||
label_bool = True
|
||
else:
|
||
label_bool = False
|
||
return (target_bool, label_bool, target_box)
|
||
return (False, False, None)
|
||
|
||
'''
|
||
description: 查询两个目标 只有 target_label 返回 box
|
||
param {*} self
|
||
param {*} tlabel
|
||
return {[bool]}
|
||
'''
|
||
def get_two_hanoi(self, target_label, label, flipv):
|
||
response = self.get_resp()
|
||
if response['code'] == 0:
|
||
# FIXME 直接在外部过滤,不在 fliter 内过滤
|
||
ret, results = self.filter_box(response['data'])
|
||
if ret:
|
||
expect_boxes = (results[:, 0] == target_label.value)
|
||
boxes = results[expect_boxes, :]
|
||
if len(boxes) != 0:
|
||
target_bool = True
|
||
target_box = boxes[:, 2:]
|
||
else:
|
||
target_bool = False
|
||
target_box = None
|
||
expect_boxes = (results[:, 0] == label.value)
|
||
boxes = results[expect_boxes, :]
|
||
# 在此处过滤
|
||
if len(boxes) != 0:
|
||
# 如果垂直翻转 (走右侧) 且 *ymin* 小于 60(走右侧)
|
||
if flipv:
|
||
label_bool = all(box[3] > 60 for box in boxes)
|
||
# 如果不垂直翻转 (走左侧) 且 *ymax* 大于 180(走左侧)
|
||
else:
|
||
label_bool = all(box[5] < 180 for box in boxes)
|
||
# label_bool = True
|
||
else:
|
||
label_bool = False
|
||
return (target_bool, label_bool, target_box)
|
||
return (False, False, None)
|
||
|
||
'''
|
||
description: 判断传入的多目标标签是否存在,存在返回 True
|
||
param {*} self
|
||
param {*} tlabel
|
||
return {[bool]}
|
||
'''
|
||
def find_mult(self, tlabel):
|
||
response = self.get_resp()
|
||
find_result = []
|
||
if response['code'] == 0:
|
||
ret, results = self.filter_box(response['data'])
|
||
if ret:
|
||
for label in tlabel:
|
||
expect_boxes = (results[:, 0] == label.value)
|
||
boxes = results[expect_boxes, :]
|
||
if len(boxes) != 0:
|
||
find_result.append(True)
|
||
else:
|
||
find_result.append(False)
|
||
return find_result
|
||
return [False for _ in range(len(tlabel))]
|
||
'''
|
||
description: 根据传入的标签,寻找画面中最左侧的并返回 error
|
||
param {*} self
|
||
param {*} tlabel
|
||
return {bool, error}
|
||
'''
|
||
def aim_left(self, tlabel):
|
||
# 如果标签存在,则返回列表中位置最靠左的目标框和中心的偏移值
|
||
response = self.get_resp()
|
||
if response['code'] == 0:
|
||
ret, results = self.filter_box(response['data'])
|
||
if ret:
|
||
expect_boxes = (results[:, 0] == tlabel.value)
|
||
boxes = results[expect_boxes, :]
|
||
if len(boxes) == 0:
|
||
return (False, )
|
||
xmin_values = boxes[:, 2] # xmin
|
||
xmin_index = np.argmin(xmin_values)
|
||
error = (boxes[xmin_index][4] + boxes[xmin_index][2] - self.img_size[0]) / 2
|
||
return (True, error)
|
||
return (False, )
|
||
def aim_right(self, tlabel):
|
||
# 如果标签存在,则返回列表中位置最靠右的目标框和中心的偏移值
|
||
response = self.get_resp()
|
||
if response['code'] == 0:
|
||
ret, results = self.filter_box(response['data'])
|
||
if ret:
|
||
expect_boxes = (results[:, 0] == tlabel.value)
|
||
boxes = results[expect_boxes, :]
|
||
if len(boxes) == 0:
|
||
return (False, None)
|
||
xmax_values = boxes[:, 4] # xmax
|
||
xmax_index = np.argmax(xmax_values)
|
||
error = (boxes[xmax_index][4] + boxes[xmax_index][2] - self.img_size[0]) / 2
|
||
return (True, error)
|
||
return (False, None)
|
||
def aim_near(self, tlabel):
|
||
# 如果标签存在,则返回列表中位置最近的目标框和中心的偏移值
|
||
response = self.get_resp()
|
||
if response['code'] == 0:
|
||
ret, results = self.filter_box(response['data'])
|
||
if ret:
|
||
expect_boxes = (results[:, 0] == tlabel.value)
|
||
boxes = results[expect_boxes, :]
|
||
if len(boxes) == 0:
|
||
return (False, 0)
|
||
center_x_values = np.abs(boxes[:, 2] + boxes[:, 4] - self.img_size[0])
|
||
center_x_index = np.argmin(center_x_values)
|
||
error = (boxes[center_x_index][4] + boxes[center_x_index][2] - self.img_size[0]) / 2
|
||
return (True, error)
|
||
return (False, 0)
|
||
class LLM_deepseek:
|
||
def __init__(self):
|
||
self.response = None
|
||
self.status = False
|
||
self.chat = ''
|
||
self.client = OpenAI(api_key="sk-c2e1073883304143981a9750b97c3518", base_url="https://api.deepseek.com")
|
||
self.prompt = '''
|
||
你是一个机器人动作规划者,请把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作:
|
||
允许的动作及其对应格式如下:
|
||
[{'properties': {'index': {'title': 'Index', 'type': 'integer'}, 'action': {'title': 'Action', 'type': 'string'}, 'time': {'title': 'Time', 'type': 'number'}}, 'required': ['index', 'action', 'time'], 'title': 'Action', 'type': 'object'}]
|
||
我不允许你自我创造出新的 action,action 字段仅仅包括以下内容:
|
||
go_right 向右移动
|
||
go_left 向左移动
|
||
go_front 向前移动
|
||
go_back 向后移动
|
||
go_left_rotate 向左旋转
|
||
go_right_rotate 向右旋转
|
||
beep_seconds 蜂鸣器鸣叫的时间
|
||
beep_counts 蜂鸣器鸣叫的次数
|
||
light_seconds 灯光发光的时间
|
||
light_counts 灯光闪烁的次数
|
||
beep_light_counts 灯光和蜂鸣器一起闪烁的次数
|
||
go_sleep 什么都不做
|
||
我的话和你的回复示例如下:
|
||
我的话:向左移 0.1m, 向左转弯 85 度
|
||
你的回复:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}]
|
||
我的话:向右移 0.2m, 向前 0.1m
|
||
你的回复:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}]
|
||
我的话:向右转 90 度,向右移 0.1m
|
||
你的回复:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}]
|
||
我的话:原地左转 38 度
|
||
你的回复:[{"index":0,"action":"go_left_rotate","time":38}]
|
||
我的话:蜂鸣器发声 5 秒
|
||
你的回复:[{"index":0,"action":"beep_seconds","time":5}]
|
||
我的话:发光或者照亮 5 秒
|
||
你的回复:[{"index":0,"action":"light_seconds","time":5}]
|
||
我的话:向右走 30cm,照亮 2s
|
||
你的回复:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}]
|
||
我的话:向左移 0.2m, 向后 0.1m
|
||
你的回复:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}]
|
||
我的话:鸣叫 3 声
|
||
你的回复:[{"index":0,"action":"beep_counts","time":3}]
|
||
我的话:前行零点五米
|
||
你的回复:[{"index":0,"action":"go_front","time":0.5}]
|
||
我的话:闪烁灯光 1 次并伴有蜂鸣器
|
||
你的回复:[{"index":0,"action":"beep_light_counts","time": 1}]
|
||
我的话:灯光闪烁 3 次同时蜂鸣器也叫 3 次
|
||
你的回复:[{"index":0,"action":"beep_light_counts","time": 3}]
|
||
|
||
强调一下,对于‘离开’这个指令,请忽略,这对我很重要!
|
||
'''
|
||
def request_thread(self):
|
||
logger.info("llm 请求远程服务器中 (request_thread)")
|
||
try:
|
||
self.response = self.client.chat.completions.create(
|
||
model="deepseek-chat",
|
||
messages=[
|
||
{"role": "system", "content": self.prompt},
|
||
{"role": "user", "content": '我的话如下:' + self.chat},
|
||
],
|
||
stream=False,
|
||
temperature=0.7
|
||
)
|
||
logger.info("llm 远程服务器正常返回 (request_thread)")
|
||
except:
|
||
logger.warning("llm 请求失败或返回异常,先检查网络连接 (request_thread)")
|
||
self.status = True
|
||
def request(self, _chat):
|
||
self.chat = _chat
|
||
thread = threading.Thread(target=self.request_thread, daemon=True)
|
||
thread.start()
|
||
logger.info("llm 开启请求线程")
|
||
def get_command_json(self,chat = ''):
|
||
# response = self.client.chat.completions.create(
|
||
# model="deepseek-chat",
|
||
# messages=[
|
||
# {"role": "system", "content": self.prompt},
|
||
# {"role": "user", "content": '我的话如下:' + chat},
|
||
# ],
|
||
# stream=False,
|
||
# temperature=0.7
|
||
# )
|
||
logger.info("llm 阻塞等待服务器返回中")
|
||
while not self.status: # FIXME 阻塞等待是否合适
|
||
pass
|
||
logger.info("llm 收到返回")
|
||
return self.response.choices[0].message.content
|
||
class LLM:
|
||
def __init__(self):
|
||
self.init_done_flag = False
|
||
erniebot.api_type = "qianfan"
|
||
erniebot.ak = "jReawMtWhPu0wrxN9Rp1MzZX"
|
||
erniebot.sk = "eowS1BqsNgD2i0C9xNnHUVOSNuAzVTh6"
|
||
self.model = 'ernie-lite'
|
||
# self.prompt = '''你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 json 结果,机器人工作空间参考右手坐标系。
|
||
# 严格按照下面的描述生成给定格式 json,从现在开始你仅仅给我返回 json 数据!'''
|
||
# self.prompt += '''正确的示例如下:
|
||
# 向左移 0.1m, 向左转弯 85 度 [{'func': 'move', 'x': 0, 'y': 0.1},{'func': 'turn','angle': -85}],
|
||
# 向右移 0.2m, 向前 0.1m [{'func': 'move', 'x': 0, 'y': -0.2},{'func': 'move', 'x': 0.1, 'y': 0}],
|
||
# 向右转 85 度,向右移 0.1m [{'func': 'turn','angle': 85},{'func': 'move', 'x': 0, 'y': -0.1}],
|
||
# 原地左转 38 度 [{'func': 'turn','angle': -38}],
|
||
# 蜂鸣器发声 5 秒 [{'func': 'beep', 'time': 5}]
|
||
# 发光或者照亮 5 秒 [{'func': 'light', 'time': 5}]
|
||
# 向右走 30cm,照亮 2s [{'func': 'move', 'x': 0, 'y': -0.3}, {'func': 'light', 'time': 2}],
|
||
# 向左移 0.2m, 向后 0.1m [{'func': 'move', 'x': 0, 'y': 0.2},{'func': 'move', 'x': -0.1, 'y': 0}],
|
||
# 鸣叫 3 声 [{'func': 'beep', 'time': 3}]
|
||
# 前行零点五米 [{'func': 'move', 'x': 0.5, 'y': 0}]
|
||
# '''
|
||
# self.prompt = '''
|
||
# 你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作:
|
||
# 允许的动作及其对应格式如下:
|
||
# - 向左移:{"index":N,"action":"go_left","time":T}
|
||
# - 向右移:{"index":N,"action":"go_right","time":T}
|
||
# - 向前移:{"index":N,"action":"go_front","time":T}
|
||
# - 向后移:{"index":N,"action":"go_back","time":T}
|
||
# - 向左转:{"index":N,"action":"go_left_rotate","time":T}
|
||
# - 向右转:{"index":N,"action":"go_right_rotate","time":T}
|
||
# - 蜂鸣器发声:{"index":N,"action":"beep_seconds","time":T}
|
||
# - 蜂鸣器发声次数:{"index":N,"action":"beep_counts","time":T}
|
||
# - 发光或者照亮:{"index":N,"action":"light_seconds","time":T}
|
||
# - 发光次数或者闪烁次数:{"index":N,"action":"light_counts","time":T}
|
||
# - 发光并伴随蜂鸣器:{"index":N,"action":"beep_light_counts","time":T}
|
||
# - 等待{"index":N,"action":"go_sleep","time":T}
|
||
# 示例输入输出如下:
|
||
# 输入:向左移 0.1m, 向左转弯 85 度
|
||
# 输出:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}]
|
||
# 输入:向右移 0.2m, 向前 0.1m
|
||
# 输出:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}]
|
||
# 输入:向右转 90 度,向右移 0.1m
|
||
# 输出:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}]
|
||
# 输入:原地左转 38 度
|
||
# 输出:[{"index":0,"action":"go_left_rotate","time":38}]
|
||
# 输入:蜂鸣器发声 5 秒
|
||
# 输出:[{"index":0,"action":"beep_seconds","time":5}]
|
||
# 输入:发光或者照亮 5 秒
|
||
# 输出:[{"index":0,"action":"light_seconds","time":5}]
|
||
# 输入:向右走 30cm, 照亮 2s
|
||
# 输出:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}]
|
||
# 输入:向左移 0.2m, 向后 0.1m
|
||
# 输出:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}]
|
||
# 输入:鸣叫 3 声
|
||
# 输出:[{"index":0,"action":"beep_counts","time":3}]
|
||
# 输入:前行零点五米
|
||
# 输出:[{"index":0,"action":"go_front","time":0.5}]
|
||
# 输入:闪烁灯光 1 次并伴有蜂鸣器
|
||
# 输出:[{"index":0,"action":"beep_light_counts","time": 1}]
|
||
# 输入:灯光闪烁 3 次同时蜂鸣器也叫 3 次
|
||
# 输出:[{"index":0,"action":"beep_light_counts","time": 3}]
|
||
# '''
|
||
# self.prompt += '''请根据上面的示例,解析该任务文本,并返回相应的 JSON 字段。确保 JSON 中包含了键 index action 和 time 以及相应的值。不要附带其他的解释和注释,只需要 JSON 字段。'''
|
||
self.prompt = '''
|
||
你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作:
|
||
允许的动作及其对应格式如下:
|
||
[{'properties': {'index': {'title': 'Index', 'type': 'integer'}, 'action': {'title': 'Action', 'type': 'string'}, 'time': {'title': 'Time', 'type': 'number'}}, 'required': ['index', 'action', 'time'], 'title': 'Action', 'type': 'object'}]
|
||
我不允许你自我创造出新的 action,action 字段仅仅包括以下内容:
|
||
go_right 向右移动
|
||
go_left 向左移动
|
||
go_front 向前移动
|
||
go_back 向后移动
|
||
go_left_rotate 向左旋转
|
||
go_right_rotate 向右旋转
|
||
beep_seconds 蜂鸣器鸣叫的时间
|
||
beep_counts 蜂鸣器鸣叫的次数
|
||
light_seconds 灯光发光的时间
|
||
light_counts 灯光闪烁的次数
|
||
beep_light_counts 灯光和蜂鸣器一起闪烁的次数
|
||
go_sleep 什么都不做
|
||
我的话和你的回复示例如下:
|
||
我的话:向左移 0.1m, 向左转弯 85 度
|
||
你的回复:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}]
|
||
我的话:向右移 0.2m, 向前 0.1m
|
||
你的回复:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}]
|
||
我的话:向右转 90 度,向右移 0.1m
|
||
你的回复:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}]
|
||
我的话:原地左转 38 度
|
||
你的回复:[{"index":0,"action":"go_left_rotate","time":38}]
|
||
我的话:蜂鸣器发声 5 秒
|
||
你的回复:[{"index":0,"action":"beep_seconds","time":5}]
|
||
我的话:发光或者照亮 5 秒
|
||
你的回复:[{"index":0,"action":"light_seconds","time":5}]
|
||
我的话:向右走 30cm,照亮 2s
|
||
你的回复:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}]
|
||
我的话:向左移 0.2m, 向后 0.1m
|
||
你的回复:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}]
|
||
我的话:鸣叫 3 声
|
||
你的回复:[{"index":0,"action":"beep_counts","time":3}]
|
||
我的话:前行零点五米
|
||
你的回复:[{"index":0,"action":"go_front","time":0.5}]
|
||
我的话:闪烁灯光 1 次并伴有蜂鸣器
|
||
你的回复:[{"index":0,"action":"beep_light_counts","time": 1}]
|
||
我的话:灯光闪烁 3 次同时蜂鸣器也叫 3 次
|
||
你的回复:[{"index":0,"action":"beep_light_counts","time": 3}]
|
||
|
||
我的话如下:
|
||
'''
|
||
self.messages = []
|
||
self.resp = None
|
||
worker = threading.Thread(target=self.reset, daemon=True)
|
||
worker.start()
|
||
def reset(self):
|
||
try:
|
||
self.messages = [self.make_message(self.prompt)]
|
||
self.resp = erniebot.ChatCompletion.create(
|
||
model=self.model,
|
||
messages=self.messages,
|
||
)
|
||
self.messages.append(self.resp.to_message())
|
||
self.init_done_flag = True
|
||
logger.info("LLM init done")
|
||
except:
|
||
logger.error("LLM init error")
|
||
def make_message(self,content):
|
||
return {'role': 'user', 'content': content}
|
||
def get_command_json(self,chat):
|
||
while self.init_done_flag == False: # 等待初始化 (要是等到调用还没初始化,那就是真寄了)
|
||
pass
|
||
chat = '我的话如下:' + chat
|
||
self.messages.append(self.make_message(chat))
|
||
self.resp = erniebot.ChatCompletion.create(
|
||
model=self.model,
|
||
messages=self.messages,
|
||
)
|
||
self.messages.append(self.resp.to_message())
|
||
resp = self.resp.get_result().replace(' ', '')
|
||
return resp
|
||
|
||
class CountRecord:
|
||
def __init__(self, stop_count=2) -> None:
|
||
self.last_record = None
|
||
self.count = 0
|
||
self.stop_cout = stop_count
|
||
|
||
def get_count(self, val):
|
||
try:
|
||
if val == self.last_record:
|
||
self.count += 1
|
||
else:
|
||
self.count=0
|
||
self.last_record = val
|
||
return self.count
|
||
except Exception as e:
|
||
print(e)
|
||
|
||
def __call__(self, val):
|
||
self.get_count(val)
|
||
if self.count >= self.stop_cout:
|
||
if type(val) == bool:
|
||
return val
|
||
return True
|
||
else:
|
||
return False
|
||
|
||
class PidWrap:
|
||
def __init__(self, kp, ki, kd, setpoint=0, output_limits=1):
|
||
self.pid_t = PID(kp, ki, kd, setpoint, output_limits=(0-output_limits, output_limits))
|
||
def set_target(self, target):
|
||
self.pid_t.setpoint = target
|
||
def set(self, kp, ki, kd):
|
||
self.pid_t.Kp = kp
|
||
self.pid_t.Ki = ki
|
||
self.pid_t.Kd = kd
|
||
logger.info(f"[PID]# 更新 PID 参数:Kp({kp:.2f}) Ki({ki:.2f}) Kd({kd:.2f})")
|
||
def get(self, val_in):
|
||
return self.pid_t(val_in)
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
obj = label_filter(None)
|
||
# results = obj.filter_box(resp['data'])
|
||
# expect_boxes = (results[:, 0] == tlabel.SPILLAR.value)
|
||
# np_boxes = results[expect_boxes, :]
|
||
# print(np_boxes[:, 2:])
|
||
# print(len(np_boxes))
|
||
print(obj.find(tlabel.BBALL))
|
||
print(obj.aim_left(tlabel.BBALL))
|
||
print(obj.aim_right(tlabel.BBALL))
|
||
print(obj.aim_near(tlabel.BBALL))
|
||
print(obj.get(tlabel.HOSPITAL))
|
||
lmm_bot = LLM()
|
||
while True:
|
||
chat = input("输入:")
|
||
print(lmm_bot.get_command_json(chat))
|
||
|