diff --git a/app.py b/app.py index 2c0d61d..d667212 100644 --- a/app.py +++ b/app.py @@ -15,9 +15,8 @@ from main_upper import main_func server_command = [ {"path": "/home/evan/Workplace/project_capture/build/", "script": "./capture"}, {"path": "/home/evan/Workplace/project_infer/lane_server/", "script": "lane_infer_server.py"}, - # {"path": "/home/evan/Workplace/project_infer/lane_server/", "script": "lane_infer_server1.py"}, {"path": "/home/evan/Workplace/project_infer/yolo_server/", "script": "yolo_infer_server.py"}, - + {"path": "/home/evan/Workplace/project_infer/ocr_server/", "script": "ocr_infer_server.py"}, ] processes = [] diff --git a/cfg_args.toml b/cfg_args.toml index 9e91ec4..4180f7d 100644 --- a/cfg_args.toml +++ b/cfg_args.toml @@ -10,5 +10,5 @@ UpTower_enable = true GetRBall_enable = true PutBBall_enable = true PutHanoi_enable = true -MoveArea_enable = false +MoveArea_enable = true KickAss_enable = true diff --git a/cfg_main.toml b/cfg_main.toml index fd06df5..f32336e 100644 --- a/cfg_main.toml +++ b/cfg_main.toml @@ -13,7 +13,7 @@ GetRBall_counts = 10 PutBBall_counts = 15 PutHanoi1_counts = 7 PutHanoi2_counts = 2 -PutHanoi3_counts = 5 +PutHanoi3_counts = 2 MoveArea1_counts = 6 MoveArea2_counts = 1700 KickAss_counts = 10 diff --git a/cfg_subtask.toml b/cfg_subtask.toml index df54f17..3cce9f4 100644 --- a/cfg_subtask.toml +++ b/cfg_subtask.toml @@ -50,7 +50,7 @@ pid_kd = 0 pid_kp = 1.2 pid_ki = 0 pid_kd = 0 -llm_enable = false +llm_enable = true [kick_ass] pid_kp = 0.8 diff --git a/subtask.py b/subtask.py index b0c1571..9da6c60 100644 --- a/subtask.py +++ b/subtask.py @@ -11,8 +11,9 @@ import time import variable as var import action as act import re -import threading -import ctypes +import math +# import threading +# import ctypes cfg = None cfg_args = None by_cmd = None @@ -60,10 +61,10 @@ def import_obj(_by_cmd, skip_queue): logger.info("subtask yolo client init") # ocr socket 客户端 - # context1 = zmq.Context() - # ocr_socket = context1.socket(zmq.REQ) - # ocr_socket.connect("tcp://localhost:6668") - # logger.info("subtask ocr client init") + context1 = zmq.Context() + ocr_socket = context1.socket(zmq.REQ) + ocr_socket.connect("tcp://localhost:6668") + logger.info("subtask ocr client init") filter = label_filter(socket) if cfg['move_area']['llm_enable']: @@ -1234,6 +1235,7 @@ class move_area1(): logger.info("应急避险第一阶段初始化") while (by_cmd.send_angle_camera(0) == -1): by_cmd.send_angle_camera(0) + filter.switch_camera(1) def find(self): ret = filter.find(tlabel.SIGN) if ret: @@ -1296,6 +1298,31 @@ class move_area1(): # 应急避险 第二阶段 找停车区域 class move_area2(): + def __init__(self): + self.action_dict = { + 'beep_seconds': self.beep_seconds, + 'beep_counts': self.beep_counts, + 'light_seconds': self.light_seconds, + 'light_counts': self.light_counts, + 'beep_light_counts': self.beep_light_counts, + 'beep_light_seconds': self.beep_light_seconds, + 'go_front': self.go_front, + 'go_back': self.go_back, + 'go_left': self.go_left, + 'go_right': self.go_right, + 'go_left_rotate': self.go_left_rotate, + 'go_right_rotate': self.go_right_rotate, + 'go_sleep': self.go_sleep + } + self.front_time = 0 + self.back_time = 0 + self.left_time = 0 + self.right_time = 0 + self.sum_rotate_angle = 0 + self.abs_x = 0 # 为了和程序指令适配,其中 x y 方向互换 + self.abs_y = 0 + self.abs_w = 0 + pass def init(self): logger.info("应急避险第二阶段初始化") self.offset = 15 @@ -1303,7 +1330,6 @@ class move_area2(): self.delta_y = 0 self.delta_omage = 0 def find(self): - # time.sleep(0.001) if var.skip_llm_task_flag: return 5000 ret, box = filter.get(tlabel.SHELTER) @@ -1312,44 +1338,138 @@ class move_area2(): if abs(error) < 20: return 5000 return False - def sub_light(self, delay_time): - by_cmd.send_light(1) - time.sleep(delay_time) - by_cmd.send_light(0) - def sub_beep(self,delay_time): + def add_item(self, item): + try: + return self.action_dict[item.get('action')](item.get('time')) + except: + pass + return False + def beep_seconds(self, _time): by_cmd.send_beep(1) - time.sleep(delay_time) + time.sleep(_time * 0.7) by_cmd.send_beep(0) - def sub_move(self, x, y): - # FIXME 如果同時有 xy,是否會造成 delay 不足 - self.delta_x += x - self.delta_y += y - - if x != 0: - delay_time = int(abs(x) * 500) - if x > 0: - by_cmd.send_distance_x(15, delay_time) - else: - by_cmd.send_distance_x(-15, delay_time) - elif y != 0: - delay_time = int(abs(y) * 500) - if y > 0: # 向左 - by_cmd.send_distance_y(-15, delay_time) - else: - by_cmd.send_distance_y(15, delay_time) - time.sleep(delay_time / 500) - car_stop() - pass - def sub_turn(self, angle): - self.delta_omage += angle - delay_time = int(abs(angle) * 400 / 90) - if angle < 0: - # 左转 - by_cmd.send_angle_omega(+55, delay_time) + return True + def beep_counts(self, _time): + for _ in range(_time): + by_cmd.send_beep(1) + time.sleep(0.3) + by_cmd.send_beep(0) + time.sleep(0.2) + return True + def light_seconds(self, _time): + by_cmd.send_light(1) + time.sleep(_time * 0.7) + by_cmd.send_light(0) + return True + def light_counts(self, _time): + for _ in range(_time): + by_cmd.send_light(1) + time.sleep(0.3) + by_cmd.send_light(0) + time.sleep(0.2) + return True + def beep_light_counts(self, _time): + for _ in range(_time): + by_cmd.send_beep(1) + by_cmd.send_light(1) + time.sleep(0.3) + by_cmd.send_beep(0) + by_cmd.send_light(0) + time.sleep(0.2) + return True + def beep_light_seconds(self, _time): + by_cmd.send_beep(1) + by_cmd.send_light(1) + time.sleep(_time * 0.3) + by_cmd.send_beep(0) + by_cmd.send_light(0) + return True + def go_front(self, _time): + self.abs_y -= math.sin(self.abs_w) * _time + self.abs_x += math.cos(self.abs_w) * _time + logger.info(f"向前移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]") + speed_time = int(abs(_time) * 750) + by_cmd.send_distance_x(10, speed_time) + time.sleep(speed_time / 100) + self.front_time += speed_time + return True + def go_back(self, _time): + self.abs_y += math.sin(self.abs_w) * _time + self.abs_x -= math.cos(self.abs_w) * _time + logger.info(f"向后移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]") + speed_time = int(abs(_time) * 750) + by_cmd.send_distance_x(-10, speed_time) + time.sleep(speed_time / 100) + self.back_time += speed_time + return True + def go_left(self, _time): + self.abs_y -= math.cos(self.abs_w) * _time + self.abs_x -= math.sin(self.abs_w) * _time + logger.info(f"向左移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]") + speed_time = int(abs(_time) * 750) + by_cmd.send_distance_y(-10, speed_time) + time.sleep(speed_time / 100) + self.left_time += speed_time + return True + def go_right(self, _time): + self.abs_y += math.cos(self.abs_w) * _time + self.abs_x += math.sin(self.abs_w) * _time + logger.info(f"向右移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]") + speed_time = int(abs(_time) * 750) + by_cmd.send_distance_y(10, speed_time) + time.sleep(speed_time / 100) + self.right_time += speed_time + return True + def go_shift(self, _dis_x, _dis_y): + direct_x = 1.0 if (_dis_x > 0) else -1.0 + direct_y = 1.0 if (_dis_y > 0) else -1.0 + self.abs_y -= math.sin(self.abs_w) * _dis_x + self.abs_x += math.cos(self.abs_w) * _dis_x + self.abs_y += math.cos(self.abs_w) * _dis_y + self.abs_x += math.sin(self.abs_w) * _dis_y + logger.info(f"水平移动:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]") + speed_time_x = int(abs(_dis_x) * 750) + speed_time_y = int(abs(_dis_y) * 750) + by_cmd.send_distance_x(10 * direct_x, speed_time_x) + by_cmd.send_distance_y(10 * direct_y, speed_time_y) + time.sleep(max(speed_time_x, speed_time_y) / 100) #FIXME 除以 100 是否正确 + return True + def go_left_rotate(self, _time): + self.abs_w += math.radians(_time) # 弧度制 + logger.info(f"向左旋转:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]") + self.sum_rotate_angle -= _time + speed_time = int(abs(_time) * 7.25) + by_cmd.send_angle_omega(30, speed_time) + time.sleep(speed_time / 200 + 0.5) + return True + def go_right_rotate(self, _time): + self.abs_w -= math.radians(_time) # 弧度制 + logger.info(f"向右旋转:[目标位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)} ]") + self.sum_rotate_angle += _time + speed_time = int(abs(_time) * 7.25) + by_cmd.send_angle_omega(-30, speed_time) + time.sleep(speed_time / 200 + 0.5) + return True + def go_sleep(self, _time): + time.sleep(_time*0.7) + return True + def reset(self): + logger.info(f"开始复位:[当前位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)}]") + # 归一化角度到 0-2pi + left_dregee = math.degrees(self.abs_w % (2 * math.pi)) + # 确定旋转方向 (寻找回正角度最小旋转方向) + if math.sin(self.abs_w) < 0: + logger.info(f"需要左旋 {360.0 - left_dregee} 回正") + self.go_left_rotate(360.0 - left_dregee) else: - # 右转 - by_cmd.send_angle_omega(-55, delay_time) - time.sleep(delay_time / 300 * 1.5) + logger.info(f"需要右旋 {left_dregee} 回正") + self.go_right_rotate(left_dregee) + time.sleep(0.1) + + # 在框中原点添加向左 0.6m 的偏移值,以便直接回到赛道 + self.go_shift(self.abs_x * -1.0, self.abs_y * -1.0 - 0.6) + + logger.info(f"回正后最终位置: ({self.abs_y:.2f}, {self.abs_x:.2f}), 角度: {math.degrees(self.abs_w % (2 * math.pi))}") def exec(self): var.task_speed = 0 if var.skip_llm_task_flag: @@ -1357,8 +1477,9 @@ class move_area2(): return logger.info("开始寻找停车区域") car_stop() - calibrate_new(tlabel.SHELTER, offset = 15, run = True) + # calibrate_new(tlabel.SHELTER, offset = 15, run = True) time.sleep(0.5) + var.llm_text = "黑暗环境,照亮三秒,左转 90 度,鸣叫三声" # 调用大模型 然后执行动作 try: resp = llm_bot.get_command_json(var.llm_text) @@ -1372,57 +1493,19 @@ class move_area2(): resp_commands = eval(re.findall("```json(.*?)```", resp, re.S)[0]) if len(resp_commands) == 0: return + action_list = resp_commands # 进入停车区域 - # by_cmd.send_speed_y(15) - by_cmd.send_distance_y(25, 180) - time.sleep(1) - # time.sleep(1.25) - car_stop() - logger.info(resp_commands) - for command in resp_commands: - logger.info(command) - if command['func'] == 'move': - self.sub_move(float(command['x']), float(command['y'])) - elif command['func'] == 'light': - self.sub_light(int(command['time'])) - elif command['func'] == 'beep': - self.sub_beep(int(command['time'])) - elif command['func'] == 'turn': - self.sub_turn(int(command['angle'])) - pass - else: - continue - time.sleep(0.5) + by_cmd.send_distance_y(10, 450) + time.sleep((450 * 5 / 1000) + 0.5) except: pass - time.sleep(1) - # 回到原位 - - delay_time = int(abs(self.delta_omage) * 400 / 90) - if int(abs(self.delta_omage)) == 360: - delay_time = 0 - if self.delta_omage < 0: - # 左转 - by_cmd.send_angle_omega(-55, delay_time) - else: - # 右转 - by_cmd.send_angle_omega(55, delay_time) - time.sleep(delay_time / 300 * 1.5) - if self.delta_y > 0: - # 向左移动的距离就要比进入的时候少一些 因为 action 已经向左运动了 - delay_time = 180 - (self.delta_y * 500) - else: - delay_time = 180 + (abs(self.delta_y) * 500) - # 离开停车区域 - by_cmd.send_distance_y(-25, delay_time) + for action in action_list: + self.add_item(action) + time.sleep(0.1) + pass + time.sleep(0.5) + self.reset() - time.sleep(delay_time * 5e-3) - - car_stop() - - # FIXME 移动距离指令下发后未完成,再发送速度指令,将不会清除未完成的速度值 - # by_cmd.send_distance_y(-15, 300) - pass def nexec(self): logger.warning("正在跳過大模型任務") time.sleep(2) diff --git a/test/test_action.py b/test/test_action.py new file mode 100644 index 0000000..21bb8e8 --- /dev/null +++ b/test/test_action.py @@ -0,0 +1,241 @@ +import os +import sys +import math +parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) +sys.path.append(parent_dir) +from by_cmd_py import by_cmd_py +import time +import zmq +import numpy as np +context = zmq.Context() +socket = context.socket(zmq.REQ) +socket.connect("tcp://localhost:6666") + + +def car_stop(): + for _ in range(3): + cmd_py_obj.send_speed_x(0) + time.sleep(0.2) + cmd_py_obj.send_speed_y(0) + time.sleep(0.2) + cmd_py_obj.send_speed_omega(0) + +class LLM_Action: + def __init__(self,cmd_py_obj): + self.by_cmd = cmd_py_obj + self.action_dict = { + 'beep_seconds': self.beep_seconds, + 'beep_counts': self.beep_counts, + 'light_seconds': self.light_seconds, + 'light_counts': self.light_counts, + 'beep_light_counts': self.beep_light_counts, + 'beep_light_seconds': self.beep_light_seconds, + 'go_front': self.go_front, + 'go_back': self.go_back, + 'go_left': self.go_left, + 'go_right': self.go_right, + 'go_left_rotate': self.go_left_rotate, + 'go_right_rotate': self.go_right_rotate, + 'go_sleep': self.go_sleep + } + self.front_time = 0 + self.back_time = 0 + self.left_time = 0 + self.right_time = 0 + self.sum_rotate_angle = 0 + self.abs_x = 0 # 为了和程序指令适配,其中 x y 方向互换 + self.abs_y = 0 + self.abs_w = 0 + pass + def __call__(self, item): + try: + return self.action_dict[item.get('action')](item.get('time')) + except: + pass + return False + def beep_seconds(self, _time): + self.by_cmd.send_beep(1) + time.sleep(_time * 0.7) + self.by_cmd.send_beep(0) + return True + def beep_counts(self, _time): + for _ in range(_time): + self.by_cmd.send_beep(1) + time.sleep(0.3) + self.by_cmd.send_beep(0) + time.sleep(0.2) + return True + def light_seconds(self, _time): + self.by_cmd.send_light(1) + time.sleep(_time * 0.7) + self.by_cmd.send_light(0) + return True + def light_counts(self, _time): + for _ in range(_time): + self.by_cmd.send_light(1) + time.sleep(0.3) + self.by_cmd.send_light(0) + time.sleep(0.2) + return True + def beep_light_counts(self, _time): + for _ in range(_time): + self.by_cmd.send_beep(1) + self.by_cmd.send_light(1) + time.sleep(0.3) + self.by_cmd.send_beep(0) + self.by_cmd.send_light(0) + time.sleep(0.2) + return True + def beep_light_seconds(self, _time): + self.by_cmd.send_beep(1) + self.by_cmd.send_light(1) + time.sleep(_time * 0.3) + self.by_cmd.send_beep(0) + self.by_cmd.send_light(0) + return True + def go_front(self, _time): + self.abs_y -= math.sin(self.abs_w) * _time + self.abs_x += math.cos(self.abs_w) * _time + print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") + speed_time = int(abs(_time) * 750) + self.by_cmd.send_distance_x(10, speed_time) + time.sleep(speed_time / 100) + self.front_time += speed_time + return True + def go_back(self, _time): + self.abs_y += math.sin(self.abs_w) * _time + self.abs_x -= math.cos(self.abs_w) * _time + print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") + speed_time = int(abs(_time) * 750) + self.by_cmd.send_distance_x(-10, speed_time) + time.sleep(speed_time / 100) + self.back_time += speed_time + return True + def go_left(self, _time): + self.abs_y -= math.cos(self.abs_w) * _time + self.abs_x -= math.sin(self.abs_w) * _time + print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") + speed_time = int(abs(_time) * 750) + self.by_cmd.send_distance_y(-10, speed_time) + time.sleep(speed_time / 100) + self.left_time += speed_time + return True + def go_right(self, _time): + self.abs_y += math.cos(self.abs_w) * _time + self.abs_x += math.sin(self.abs_w) * _time + print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") + speed_time = int(abs(_time) * 750) + self.by_cmd.send_distance_y(10, speed_time) + time.sleep(speed_time / 100) + self.right_time += speed_time + return True + def go_shift(self, _dis_x, _dis_y): + direct_x = 1.0 if (_dis_x > 0) else -1.0 + direct_y = 1.0 if (_dis_y > 0) else -1.0 + self.abs_y -= math.sin(self.abs_w) * _dis_x + self.abs_x += math.cos(self.abs_w) * _dis_x + self.abs_y += math.cos(self.abs_w) * _dis_y + self.abs_x += math.sin(self.abs_w) * _dis_y + print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") + speed_time_x = int(abs(_dis_x) * 750) + speed_time_y = int(abs(_dis_y) * 750) + self.by_cmd.send_distance_x(10 * direct_x, speed_time_x) + self.by_cmd.send_distance_y(10 * direct_y, speed_time_y) + time.sleep(max(speed_time_x, speed_time_y) / 100) #FIXME 除以 100 是否正确 + return True + def go_left_rotate(self, _time): + self.abs_w += math.radians(_time) # 弧度制 + print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") + self.sum_rotate_angle -= _time + speed_time = int(abs(_time) * 7.25) + self.by_cmd.send_angle_omega(30, speed_time) + time.sleep(speed_time / 200 + 0.5) + # time.sleep(speed_time / _time / 2) + return True + def go_right_rotate(self, _time): + self.abs_w -= math.radians(_time) # 弧度制 + print(f"abs postion ({self.abs_y:.2f}, {self.abs_x:.2f}) - angle {math.degrees(self.abs_w)} drgee") + self.sum_rotate_angle += _time + speed_time = int(abs(_time) * 7.25) + self.by_cmd.send_angle_omega(-30, speed_time) + time.sleep(speed_time / 200 + 0.5) + # time.sleep(speed_time / _time / 2) + return True + def go_sleep(self, _time): + time.sleep(_time*0.7) + return True + def reset(self): + print(f"开始复位:[当前位置 ({self.abs_y:.2f}, {self.abs_x:.2f}) - 角度 {math.degrees(self.abs_w)}]") + # 先复位角度 + if self.sum_rotate_angle > 0: + self.sum_rotate_angle = self.sum_rotate_angle % 360 + else: + self.sum_rotate_angle = -(abs(self.sum_rotate_angle) % 360) + # if self.sum_rotate_angle > 0: + # # 采用左转回正 + # self.go_left_rotate(self.sum_rotate_angle) + # # speed_time = int(abs(self.sum_rotate_angle) * 7.25) + # # self.by_cmd.send_angle_omega(30, speed_time) + # pass + # else: + # # 采用右转回正 + # self.go_right_rotate(abs(self.sum_rotate_angle)) + # # speed_time = int(abs(self.sum_rotate_angle) * 7.25) + # # self.by_cmd.send_angle_omega(-30, speed_time) + left_dregee = math.degrees(self.abs_w % (2 * math.pi)) #归一化角度到 0-2pi + if math.sin(self.abs_w) < 0: + print(f"需要左旋 {360.0 - left_dregee} 回正") + self.go_left_rotate(360.0 - left_dregee) + else: + print(f"需要右旋 {left_dregee} 回正") + self.go_right_rotate(left_dregee) + time.sleep(0.1) + + self.go_shift(self.abs_x * -1.0, self.abs_y * -1.0 - 0.6) # 左移 0.6m 回到赛道 + # # 再回正 x 轴 + # if self.front_time > self.back_time: + # # 采用后退回正 + # speed_time = self.front_time - self.back_time + # self.by_cmd.send_distance_x(-10, speed_time) + # else: + # speed_time = self.back_time - self.front_time + # self.by_cmd.send_distance_x(10, speed_time) + # time.sleep(speed_time / 100) + # time.sleep(0.1) + + # # 最后回正 y 轴 + # speed_time = self.left_time - self.right_time + # if speed_time < 0: + # speed_time = 4500 + abs(speed_time) + # else: + # speed_time = 4500 - speed_time + # self.by_cmd.send_distance_y(-10, speed_time / 15 + 100) + # print(speed_time * 1e-3 * 0.9) + # time.sleep(speed_time * 1e-3 * 0.9) + + print(f"回正后最终位置: ({self.abs_y:.2f}, {self.abs_x:.2f}), 角度: {math.degrees(self.abs_w % (2 * math.pi))}") + + + + + +if __name__ == "__main__": + + + cmd_py_obj = by_cmd_py() + # cmd_py_obj.send_angle_omega(-30, 20 * 7.25) + # time.sleep(20 * 7.25 / 20 / 2) + llm_act = LLM_Action(cmd_py_obj) + action_list = [{"index":0,"action":"go_left_rotate","time":270},{"index":1,"action":"go_back","time":0.2},{"index":2,"action":"go_left","time":0.2},{"index":2,"action":"beep_counts","time":3}] + + cmd_py_obj.send_distance_y(10, 450) + time.sleep((450 * 5 / 1000) + 0.5) + # time.sleep(15 * 300 * 1e-3 * 0.7) + # car_stop() + for action in action_list: + llm_act(action) + time.sleep(0.1) + pass + time.sleep(1) + llm_act.reset() + # car_stop() \ No newline at end of file diff --git a/test/test_llm.py b/test/test_llm.py index 6247ee4..e67e047 100644 --- a/test/test_llm.py +++ b/test/test_llm.py @@ -13,18 +13,48 @@ class LLM: def __init__(self): self.model = 'ernie-3.5' - self.prompt = '''你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 json 结果,机器人工作空间参考右手坐标系。 - 严格按照下面的描述生成给定格式 json,从现在开始你仅仅给我返回 json 数据''' - self.prompt += '''正确的示例如下: - 向左移 0.1m, 向左转弯 85 度 [{'func': 'move', 'x': 0, 'y': 0.1},{'func': 'turn','angle': -85}], - 向右移 0.2m, 向前 0.1m [{'func': 'move', 'x': 0, 'y': -0.2},{'func': 'move', 'x': 0.1, 'y': 0}], - 向右转 85 度,向右移 0.1m [{'func': 'turn','angle': 85},{'func': 'move', 'x': 0, 'y': -0.1}], - 原地左转 38 度 [{'func': 'turn','angle': -38}], - 蜂鸣器发声 5 秒 [{'func': 'beep', 'time': 5}] - 发光或者照亮 5 秒 [{'func': 'light', 'time': 5}] - 向右走 30cm,照亮 2s [{'func': 'move', 'x': 0, 'y': -0.3}, {'func': 'light', 'time': 2}], - 向左移 0.2m, 向后 0.1m [{'func': 'move', 'x': 0, 'y': 0.2},{'func': 'move', 'x': -0.1, 'y': 0}], + self.prompt = ''' + 你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作: + 允许的动作及其对应格式如下: + - 向左移:{"index":N,"action":"go_left","time":T} + - 向右移:{"index":N,"action":"go_right","time":T} + - 向前移:{"index":N,"action":"go_front","time":T} + - 向后移:{"index":N,"action":"go_back","time":T} + - 向左转:{"index":N,"action":"go_left_rotate","time":T} + - 向右转:{"index":N,"action":"go_right_rotate","time":T} + - 蜂鸣器发声:{"index":N,"action":"beep_seconds","time":T} + - 蜂鸣器发声次数:{"index":N,"action":"beep_counts","time":T} + - 发光或者照亮:{"index":N,"action":"light_seconds","time":T} + - 发光次数或者闪烁次数:{"index":N,"action":"light_counts","time":T} + - 发光并伴随蜂鸣器:{"index":N,"action":"beep_light_counts","time":T} + - 等待{"index":N,"action":"go_sleep","time":T} + 示例输入输出如下: + 输入:向左移 0.1m, 向左转弯 85 度 + 输出:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}] + 输入:向右移 0.2m, 向前 0.1m + 输出:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}] + 输入:向右转 90 度,向右移 0.1m + 输出:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}] + 输入:原地左转 38 度 + 输出:[{"index":0,"action":"go_left_rotate","time":38}] + 输入:蜂鸣器发声 5 秒 + 输出:[{"index":0,"action":"beep_seconds","time":5}] + 输入:发光或者照亮 5 秒 + 输出:[{"index":0,"action":"light_seconds","time":5}] + 输入:向右走 30cm, 照亮 2s + 输出:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}] + 输入:向左移 0.2m, 向后 0.1m + 输出:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}] + 输入:鸣叫 3 声 + 输出:[{"index":0,"action":"beep_counts","time":3}] + 输入:前行零点五米 + 输出:[{"index":0,"action":"go_front","time":0.5}] + 输入:闪烁灯光 1 次并伴有蜂鸣器 + 输出:[{"index":0,"action":"beep_light_counts","time": 1}] + 输入:灯光闪烁 3 次同时蜂鸣器也叫 3 次 + 输出:[{"index":0,"action":"beep_light_counts","time": 3}] ''' + self.prompt += '''请根据上面的示例,解析该任务文本,并返回相应的 JSON 字段。确保 JSON 中包含了键 index action 和 time 以及相应的值''' self.messages = [] self.resp = None self.reset() diff --git a/utils.py b/utils.py index 5443875..54ebea7 100644 --- a/utils.py +++ b/utils.py @@ -381,21 +381,62 @@ class LLM: erniebot.ak = "jReawMtWhPu0wrxN9Rp1MzZX" erniebot.sk = "eowS1BqsNgD2i0C9xNnHUVOSNuAzVTh6" self.model = 'ernie-3.5' - self.prompt = '''你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 json 结果,机器人工作空间参考右手坐标系。 - 严格按照下面的描述生成给定格式 json,从现在开始你仅仅给我返回 json 数据!''' - self.prompt += '''正确的示例如下: - 向左移 0.1m, 向左转弯 85 度 [{'func': 'move', 'x': 0, 'y': 0.1},{'func': 'turn','angle': -85}], - 向右移 0.2m, 向前 0.1m [{'func': 'move', 'x': 0, 'y': -0.2},{'func': 'move', 'x': 0.1, 'y': 0}], - 向右转 85 度,向右移 0.1m [{'func': 'turn','angle': 85},{'func': 'move', 'x': 0, 'y': -0.1}], - 原地左转 38 度 [{'func': 'turn','angle': -38}], - 蜂鸣器发声 5 秒 [{'func': 'beep', 'time': 5}] - 发光或者照亮 5 秒 [{'func': 'light', 'time': 5}] - 向右走 30cm,照亮 2s [{'func': 'move', 'x': 0, 'y': -0.3}, {'func': 'light', 'time': 2}], - 向左移 0.2m, 向后 0.1m [{'func': 'move', 'x': 0, 'y': 0.2},{'func': 'move', 'x': -0.1, 'y': 0}], - 鸣叫 3 声 [{'func': 'beep', 'time': 3}] - 前行零点五米 [{'func': 'move', 'x': 0.5, 'y': 0}] + # self.prompt = '''你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 json 结果,机器人工作空间参考右手坐标系。 + # 严格按照下面的描述生成给定格式 json,从现在开始你仅仅给我返回 json 数据!''' + # self.prompt += '''正确的示例如下: + # 向左移 0.1m, 向左转弯 85 度 [{'func': 'move', 'x': 0, 'y': 0.1},{'func': 'turn','angle': -85}], + # 向右移 0.2m, 向前 0.1m [{'func': 'move', 'x': 0, 'y': -0.2},{'func': 'move', 'x': 0.1, 'y': 0}], + # 向右转 85 度,向右移 0.1m [{'func': 'turn','angle': 85},{'func': 'move', 'x': 0, 'y': -0.1}], + # 原地左转 38 度 [{'func': 'turn','angle': -38}], + # 蜂鸣器发声 5 秒 [{'func': 'beep', 'time': 5}] + # 发光或者照亮 5 秒 [{'func': 'light', 'time': 5}] + # 向右走 30cm,照亮 2s [{'func': 'move', 'x': 0, 'y': -0.3}, {'func': 'light', 'time': 2}], + # 向左移 0.2m, 向后 0.1m [{'func': 'move', 'x': 0, 'y': 0.2},{'func': 'move', 'x': -0.1, 'y': 0}], + # 鸣叫 3 声 [{'func': 'beep', 'time': 3}] + # 前行零点五米 [{'func': 'move', 'x': 0.5, 'y': 0}] + # ''' + self.prompt = ''' + 你是一个机器人动作规划者,需要把我的话翻译成机器人动作规划并生成对应的 JSON 结果。请注意,只能使用以下指定的动作,不能创造新的动作: + 允许的动作及其对应格式如下: + - 向左移:{"index":N,"action":"go_left","time":T} + - 向右移:{"index":N,"action":"go_right","time":T} + - 向前移:{"index":N,"action":"go_front","time":T} + - 向后移:{"index":N,"action":"go_back","time":T} + - 向左转:{"index":N,"action":"go_left_rotate","time":T} + - 向右转:{"index":N,"action":"go_right_rotate","time":T} + - 蜂鸣器发声:{"index":N,"action":"beep_seconds","time":T} + - 蜂鸣器发声次数:{"index":N,"action":"beep_counts","time":T} + - 发光或者照亮:{"index":N,"action":"light_seconds","time":T} + - 发光次数或者闪烁次数:{"index":N,"action":"light_counts","time":T} + - 发光并伴随蜂鸣器:{"index":N,"action":"beep_light_counts","time":T} + - 等待{"index":N,"action":"go_sleep","time":T} + 示例输入输出如下: + 输入:向左移 0.1m, 向左转弯 85 度 + 输出:[{"index":0,"action":"go_left","time":0.1},{"index":1,"action":"go_left_rotate","time":85}] + 输入:向右移 0.2m, 向前 0.1m + 输出:[{"index":0,"action":"go_right","time":0.2},{"index":1,"action":"go_front","time":0.1}] + 输入:向右转 90 度,向右移 0.1m + 输出:[{"index":0,"action":"go_right_rotate","time":90},{"index":1,"action":"go_right","time":0.1}] + 输入:原地左转 38 度 + 输出:[{"index":0,"action":"go_left_rotate","time":38}] + 输入:蜂鸣器发声 5 秒 + 输出:[{"index":0,"action":"beep_seconds","time":5}] + 输入:发光或者照亮 5 秒 + 输出:[{"index":0,"action":"light_seconds","time":5}] + 输入:向右走 30cm, 照亮 2s + 输出:[{"index":0,"action":"go_right","time":0.3},{"index":1,"action":"light_seconds","time":2}] + 输入:向左移 0.2m, 向后 0.1m + 输出:[{"index":0,"action":"go_left","time":0.2},{"index":1,"action":"go_back","time":0.1}] + 输入:鸣叫 3 声 + 输出:[{"index":0,"action":"beep_counts","time":3}] + 输入:前行零点五米 + 输出:[{"index":0,"action":"go_front","time":0.5}] + 输入:闪烁灯光 1 次并伴有蜂鸣器 + 输出:[{"index":0,"action":"beep_light_counts","time": 1}] + 输入:灯光闪烁 3 次同时蜂鸣器也叫 3 次 + 输出:[{"index":0,"action":"beep_light_counts","time": 3}] ''' - self.prompt += '''你只需要根据我的示例解析出指令即可,不要给我其他多余的回复;再次强调 你无需给我其他多余的回复 这对我很重要''' + self.prompt += '''请根据上面的示例,解析该任务文本,并返回相应的 JSON 字段。确保 JSON 中包含了键 index action 和 time 以及相应的值''' self.messages = [] self.resp = None worker = threading.Thread(target=self.reset, daemon=True)