53 lines
2.1 KiB
Python
53 lines
2.1 KiB
Python
import paddle.inference as paddle_infer
|
|
import numpy as np
|
|
import cv2
|
|
class Yolo_model_infer:
|
|
def __init__(self, model_dir="./ppyoloe_plus_crn_t_auxhead_320_300e_coco", target_size=[320, 320]):
|
|
# 初始化 paddle 推理
|
|
self.model_dir = model_dir
|
|
self.config = paddle_infer.Config(model_dir + "/model.pdmodel", model_dir + "/model.pdiparams")
|
|
self.config.disable_glog_info()
|
|
self.config.enable_use_gpu(500, 0)
|
|
self.config.enable_memory_optim()
|
|
self.config.switch_ir_optim()
|
|
self.config.switch_use_feed_fetch_ops(False)
|
|
self.predictor = paddle_infer.create_predictor(self.config)
|
|
self.input_names = self.predictor.get_input_names()
|
|
self.input_handle = self.predictor.get_input_handle(self.input_names[0])
|
|
self.input_handle1 = self.predictor.get_input_handle(self.input_names[1])
|
|
self.output_names = self.predictor.get_output_names()
|
|
self.output_handle = self.predictor.get_output_handle(self.output_names[0])
|
|
|
|
self.target_size = target_size
|
|
origin_shape = (240, 320)
|
|
resize_h, resize_w = self.target_size
|
|
self.im_scale_y = resize_h / float(origin_shape[0])
|
|
self.im_scale_x = resize_w / float(origin_shape[1])
|
|
self.scale_info = np.array([[self.im_scale_y, self.im_scale_x]]).astype('float32')
|
|
def infer(self,src) -> np.ndarray:
|
|
image = self.preprocess(src)
|
|
self.input_handle.copy_from_cpu(image)
|
|
self.input_handle1.copy_from_cpu(self.scale_info)
|
|
self.predictor.run()
|
|
results = self.output_handle.copy_to_cpu()
|
|
return results
|
|
def preprocess(self,src):
|
|
# resize
|
|
# keep_ratio=0
|
|
img = cv2.resize(
|
|
src,
|
|
None,
|
|
None,
|
|
fx=self.im_scale_x,
|
|
fy=self.im_scale_y,
|
|
interpolation=2)
|
|
# NormalizeImage
|
|
img = img.astype(np.float32, copy=False)
|
|
scale = 1.0 / 255.0
|
|
img *= scale
|
|
# Permute
|
|
img = img.transpose((2, 0, 1))
|
|
img = np.array((img, ))
|
|
# .astype('float32')
|
|
return img
|
|
|