Files
project_infer/lane_server/infer.py
2024-06-07 20:19:04 +08:00

37 lines
1.6 KiB
Python

import paddle.inference as paddle_infer
import numpy as np
import paddle.vision.transforms as T
class Lane_model_infer:
def __init__(self, model_dir="./lane_model"):
# 初始化 paddle 推理
self.model_dir = model_dir
self.config = paddle_infer.Config(model_dir + "/model.pdmodel", model_dir + "/model.pdiparams")
self.config.disable_glog_info()
self.config.enable_use_gpu(200, 0)
# self.config.enable_memory_optim(True)
# self.config.switch_ir_optim(True)
# self.config.switch_use_feed_fetch_ops(False)
# self.config.delete_pass("conv_elementwise_add_act_fuse_pass")
# self.config.delete_pass("conv_elementwise_add_fuse_pass")
self.predictor = paddle_infer.create_predictor(self.config)
self.input_names = self.predictor.get_input_names()
self.input_handle = self.predictor.get_input_handle(self.input_names[0])
self.output_names = self.predictor.get_output_names()
self.output_handle = self.predictor.get_output_handle(self.output_names[0])
self.normalize_transform = T.Normalize(mean=[127.5], std=[127.5])
# print(self.config.summary())
def infer(self,src) -> np.ndarray:
image = self.normalize_transform(src)
image = image.transpose(2, 0, 1)
image = np.expand_dims(image, axis=0)
self.input_handle.copy_from_cpu(image)
self.predictor.run()
results = self.output_handle.copy_to_cpu()[0]
return results
# if __name__ == "__main__":
# predictor = Lane_model_infer()
# import time
# while True:
# time.sleep(1)
# print('123')