Files
2024-06-07 20:19:04 +08:00

51 lines
2.0 KiB
Python

import paddle.inference as paddle_infer
import numpy as np
import cv2
class Person_model_infer:
def __init__(self, model_dir="./model", target_size=[640, 640]):
# 初始化 paddle 推理
self.model_dir = model_dir
self.config = paddle_infer.Config(model_dir + "/model.pdmodel", model_dir + "/model.pdiparams")
self.config.disable_glog_info()
self.config.enable_use_gpu(200, 0)
self.predictor = paddle_infer.create_predictor(self.config)
self.input_names = self.predictor.get_input_names()
self.input_handle = self.predictor.get_input_handle(self.input_names[0])
self.input_handle1 = self.predictor.get_input_handle(self.input_names[1])
self.output_names = self.predictor.get_output_names()
self.output_handle = self.predictor.get_output_handle(self.output_names[0])
self.target_size = target_size
origin_shape = (240, 320)
resize_h, resize_w = self.target_size
self.im_scale_y = resize_h / float(origin_shape[0])
self.im_scale_x = resize_w / float(origin_shape[1])
self.scale_info = np.array([[self.im_scale_y, self.im_scale_x]]).astype('float32')
def infer(self,src) -> np.ndarray:
image = self.preprocess(src)
self.input_handle.copy_from_cpu(image)
self.input_handle1.copy_from_cpu(self.scale_info)
self.predictor.run()
results = self.output_handle.copy_to_cpu()
return results
def preprocess(self, src):
# resize
# keep_ratio=0
img = cv2.resize(
src,
None,
None,
fx=self.im_scale_x,
fy=self.im_scale_y,
interpolation=2)
# Permute
img = img.astype(np.float32, copy=False)
img = img.transpose((2, 0, 1))
img = np.array((img, ))
return img
if __name__ == "__main__":
predictor = Person_model_infer()
# import time
# while True:
# time.sleep(1)
# print('123')