initial commit

This commit is contained in:
2024-06-07 20:19:04 +08:00
parent 5840e5883f
commit 381d05efa1
15 changed files with 2146 additions and 15 deletions

View File

@@ -1,20 +1,25 @@
import paddle.inference as paddle_infer
import numpy as np
import paddle.vision.transforms as T
class Lane_model_infer:
def __init__(self, model_dir="./lane_model"):
# 初始化paddle推理
# 初始化 paddle 推理
self.model_dir = model_dir
self.config = paddle_infer.Config(model_dir + "/model.pdmodel", model_dir + "/model.pdiparams")
self.config.disable_glog_info()
self.config.enable_use_gpu(200, 0)
# self.config.enable_memory_optim(True)
# self.config.switch_ir_optim(True)
# self.config.switch_use_feed_fetch_ops(False)
# self.config.delete_pass("conv_elementwise_add_act_fuse_pass")
# self.config.delete_pass("conv_elementwise_add_fuse_pass")
self.predictor = paddle_infer.create_predictor(self.config)
self.input_names = self.predictor.get_input_names()
self.input_handle = self.predictor.get_input_handle(self.input_names[0])
self.output_names = self.predictor.get_output_names()
self.output_handle = self.predictor.get_output_handle(self.output_names[0])
self.normalize_transform = T.Normalize(mean=[127.5], std=[127.5])
# print(self.config.summary())
def infer(self,src) -> np.ndarray:
image = self.normalize_transform(src)
image = image.transpose(2, 0, 1)
@@ -22,4 +27,11 @@ class Lane_model_infer:
self.input_handle.copy_from_cpu(image)
self.predictor.run()
results = self.output_handle.copy_to_cpu()[0]
return results
return results
# if __name__ == "__main__":
# predictor = Lane_model_infer()
# import time
# while True:
# time.sleep(1)
# print('123')

View File

@@ -5,16 +5,22 @@ import zmq
from infer import Lane_model_infer
import numpy as np
import cv2
lock = threading.Lock()
response = {'code': 0, 'data': 0}
# 处理server响应数据
# context2 = zmq.Context()
# socket_server = context2.socket(zmq.PUB)
# socket_server.bind("tcp://*:7778")
# 处理 server 响应数据
def server_resp(lane_infer_port):
logger.info("lane server thread init success")
global response
context = zmq.Context()
# 启动server
# 启动 server
socket = context.socket(zmq.REP)
socket.bind(f"tcp://*:{lane_infer_port}")
logger.info("lane infer server init success")
@@ -23,8 +29,6 @@ def server_resp(lane_infer_port):
with lock:
socket.send_pyobj(response)
if __name__ == "__main__":
cfg = toml.load('../cfg_infer_server.toml')
@@ -32,29 +36,36 @@ if __name__ == "__main__":
# 配置日志输出
logger.add(cfg['debug']['logger_filename'], format=cfg['debug']['logger_format'], retention = 5, level="INFO")
# 连接摄像头server 巡线只需要连接前摄像头
# 连接摄像头 server 巡线只需要连接前摄像头
context = zmq.Context()
camera_socket = context.socket(zmq.SUB)
camera_socket = context.socket(zmq.REQ)
camera_socket.connect(f"tcp://localhost:{cfg['camera']['front_camera_port']}")
camera_socket.setsockopt_string(zmq.SUBSCRIBE, "")
logger.info("connect camera success")
# 初始化paddle推理器
# 初始化 paddle 推理器
predictor = Lane_model_infer()
logger.info("lane model load success")
# 启动lane_infer_server线程
# 启动 lane_infer_server 线程
mythread = threading.Thread(target=server_resp,
args=(cfg['server']['lane_infer_port'],),
daemon=True)
mythread.start()
while True:
camera_socket.send_string("")
message = camera_socket.recv()
np_array = np.frombuffer(message, dtype=np.uint8)
frame = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
frame = cv2.resize(frame,(320,240))
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
result = predictor.infer(frame)
with lock:
response['data'] = result
# print(result)
# cv2.circle(frame,(int(result[0]),int(result[1])),5,(0,255,0),-1)
# socket_server.send_pyobj(frame)
if cv2.waitKey(1) == 27:
break
mythread.join()
logger.info("lane infer server exit")

View File

@@ -5,7 +5,7 @@ import cv2
context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect("tcp://localhost:5555")
socket.connect("tcp://localhost:5556")
socket.setsockopt_string(zmq.SUBSCRIBE, '')
while True: