feat: 增加通信参数

This commit is contained in:
bmy
2024-03-27 10:58:09 +08:00
parent 8bc484488e
commit 5343e5ac33
5 changed files with 123 additions and 55 deletions

View File

@@ -7,83 +7,147 @@
#include "lwrb.h" #include "lwrb.h"
#include "crc16.h" #include "crc16.h"
lwrb_t lwrb_struct; uint8_t frame_buffer_recv[(2 * (4 + BY_FRAME_DATA_NUM * sizeof(uint32_t))) + 1];
uint8_t lwrb_buffer[50]; uint8_t frame_buffer_send[4 + BY_FRAME_DATA_NUM * sizeof(uint32_t)];
uint8_t frame_buffer[100]; uint8_t frame_parse_busy;
lwrb_t lwrb_ctx;
void by_frame_init(void) void by_frame_init(void)
{ {
lwrb_init(&lwrb_ctx, frame_buffer_recv, sizeof(frame_buffer_recv)); // lwrb 最大元素数量为 buff 大小减一
uart_init(BY_FRAME_UART_INDEX, BY_FRAME_UART_BAUDRATE, BY_FRAME_UART_TX_PIN, BY_FRAME_UART_RX_PIN); uart_init(BY_FRAME_UART_INDEX, BY_FRAME_UART_BAUDRATE, BY_FRAME_UART_TX_PIN, BY_FRAME_UART_RX_PIN);
// uart_rx_interrupt(BY_FRAME_UART_INDEX, ENABLE); uart_rx_interrupt(BY_FRAME_UART_INDEX, ENABLE);
lwrb_init(&lwrb_struct, lwrb_buffer, 50);
} }
void by_frame_send(uint8_t data_num, uint32_t *data_array) void by_frame_send(uint32_t *data_array)
{ {
uint16_t crc_cal = 0; uint16_t crc_cal = 0;
frame_buffer[0] = BY_FRAME_HEAD_1; const uint8_t data_byte_num = BY_FRAME_DATA_NUM * sizeof(uint32_t);
frame_buffer[1] = BY_FRAME_HEAD_2;
memcpy(&frame_buffer[2], data_array, data_num * sizeof(uint32_t)); frame_buffer_send[0] = BY_FRAME_HEAD_1;
crc_cal = crc16_check(frame_buffer, 2 + data_num * sizeof(uint32_t)); frame_buffer_send[1] = BY_FRAME_HEAD_2;
frame_buffer[2 + data_num * sizeof(uint32_t)] = (uint8_t)(crc_cal >> 8); // 当传入数组不足时,会发生越界情况
frame_buffer[3 + data_num * sizeof(uint32_t)] = (uint8_t)(crc_cal); memcpy(frame_buffer_send + 2, data_array, data_byte_num);
crc_cal = crc16_check(frame_buffer_send, 2 + data_byte_num);
uart_write_buffer(BY_FRAME_UART_INDEX, frame_buffer, 4 + data_num * sizeof(uint32_t)); frame_buffer_send[2 + data_byte_num] = (uint8_t)(crc_cal >> 8);
system_delay_us(BY_FRAME_UART_IDLE_TIME_US); frame_buffer_send[3 + data_byte_num] = (uint8_t)(crc_cal);
uart_write_buffer(BY_FRAME_UART_INDEX, frame_buffer_send, 4 + data_byte_num);
} }
void by_frame_parse(uint8_t data_num, uint32_t *data_array) /**
* @brief
*
* @param data_num
* @param data_array
* @todo 将其中写死的数据长度按照宏定义给出
*/
void by_frame_parse(uint32_t *data_array)
{ {
uint8_t cnt = 0; uint32_t len = lwrb_get_full(&lwrb_ctx); // 缓冲区大小
uint8_t cnt_crc = 2; uint8_t status = 0; // 状态 0-未找到帧头 1-找到帧头 2-校验
uint8_t data = 0; uint16_t frame_start = 0; // 帧起始位置
uint8_t data_array_temp[100]; uint8_t frame_buf[4 + BY_FRAME_DATA_NUM * sizeof(uint32_t)] = {0}; // 帧
uint16_t crc_cal = 0; uint8_t buf[(4 + BY_FRAME_DATA_NUM * sizeof(uint32_t)) * 2] = {0}; // 用于解析的数据块
const uint8_t data_byte_num = BY_FRAME_DATA_NUM * sizeof(uint32_t);
if (lwrb_get_full(&lwrb_struct) >= (4 + data_num * sizeof(uint32_t))) { if (len < 2 * (4 + data_byte_num)) {
while (lwrb_read(&lwrb_struct, &data, 1)) { // 当前要求缓冲区满
printf("char : %0.2X\r\n", data); // (x) 缓冲区内长度小于帧长度,直接返回
if ((0 == cnt) && (BY_FRAME_HEAD_1 == data)) { // 要是每次读的时候缓冲区内就只有前一帧的尾部和后一帧的头部,岂不是很尴尬
cnt = 1; // 是不是应该正确解析之后再把过的部分清空?但是是异步操作,实际上缓冲区内已经是新数据了
data_array_temp[0] = data; // 可是直接读取 fifo 的话也是异步操作
continue; // 发的慢的话就很有可能有同步问题,导致一直解析不出来
// 喵的,为啥不直接丢中断里解析算了
// 目前的解决办法大概是缓冲区开两帧长的大小,然后一次性读完
// 读取的时候不清除,等待新帧覆盖
// 用 lwrb 的话就只能清除了
return;
}
// 从环形缓冲区里读取数据
lwrb_read(&lwrb_ctx, buf, len);
// 递归解析有效帧
while (1) {
if (0 == status) // 没找到帧头
{
// 读到最后一个元素还没找到帧头
if (frame_start >= len - 2) {
return;
} }
// printf("finding frame head, now frame_start %d\r\n", frame_start);
uint16_t temp = (buf[frame_start] | (buf[frame_start + 1] << 8));
frame_start++;
// printf("now find %02X\r\n", temp);
if ((1 == cnt) && (BY_FRAME_HEAD_2 == data)) { // 递归寻找帧头,直接俩拼起来找 注意比较的时候低位在前
cnt = 2; if ((BY_FRAME_HEAD_2 << 8 | BY_FRAME_HEAD_1) == temp) {
data_array_temp[1] = data; status = 1; // 找到了好耶
continue; // printf("frame head found!!!!!!!!!\r\n");
} }
continue;
}
if ((2 <= cnt) && (cnt < 2 + data_num * sizeof(uint32_t))) { // 开始读数据
data_array_temp[cnt] = data; if (1 == status) {
cnt++; // 剩下的数据不够组成一帧
continue; if ((frame_start + 4 + data_byte_num - 1) > len) {
// printf("failed! length not enough \r\n");
// 解析出错,缓冲区中没有有效帧
return;
} else {
// 复制到帧缓冲区,减一是因为之前多加了一次
memcpy(frame_buf, buf + frame_start - 1, 4 + data_byte_num);
// for (uint8_t i = 0; i < 12; i++) {
// printf("%02X", frame_buf[i]);
// }
// printf("\r\n");
status = 2;
} }
continue;
}
if (cnt_crc) { if (2 == status) // 校验 CRC
crc_cal |= ((uint16_t)data << (--cnt_crc * 8)); {
continue; if ((frame_buf[2 + data_byte_num] << 8 | frame_buf[2 + data_byte_num + 1]) == crc16_check(frame_buf, 2 + data_byte_num)) {
} // 解析成功了✌
// printf("parsed done!!!!!!!!\r\n");
printf("GET CRC %0.4X\r\n", crc_cal); // 复制数据
printf("CAL CRC %0.4X\r\n", crc16_check((uint8_t *)data_array_temp, 2 + data_num * sizeof(uint32_t))); if (NULL != (frame_buf + 2)) {
memcpy(data_array, frame_buf + 2, data_byte_num);
if (!cnt_crc) {
if (crc_cal == crc16_check((uint8_t *)data_array_temp, 2 + data_num * sizeof(uint32_t))) {
memcpy(data_array, data_array_temp + 2, data_num * sizeof(uint32_t));
printf("parsed done!\r\n");
break;
} }
return;
} else {
status = 0;
// 这样无法应对连续帧之间缺字节的的问题,但是减少了重新遍历寻找帧头的时间
// frame_start += (8 - 1);
// 从上一个帧头之后开始解析
frame_start += (2 - 1);
continue;
} }
} }
} }
return;
} }
void by_frame_parse_uart_handle(uint8_t data) void by_frame_parse_uart_handle(uint8_t data)
{ {
lwrb_write(&lwrb_struct, &data, 1); // fifo_write_element(&frame_fifo, data);
lwrb_write(&lwrb_ctx, &data, 1);
}
/**
* @brief 定时器回调,用于接收超时判断 1ms 调用一次
*
*/
void by_frame_parse_timer_handle(void)
{
} }

View File

@@ -16,11 +16,14 @@
#define BY_FRAME_UART_INDEX (UART_2) #define BY_FRAME_UART_INDEX (UART_2)
#define BY_FRAME_UART_BAUDRATE (115200) #define BY_FRAME_UART_BAUDRATE (115200)
#define BY_FRAME_UART_IDLE_TIME_US ((1000000 / BY_FRAME_UART_BAUDRATE * 8) * 4) #define BY_FRAME_DATA_NUM (3)
extern uint8_t frame_buffer[50];
extern void by_frame_init(void); extern void by_frame_init(void);
extern void by_frame_send(uint8_t data_num, uint32_t *data_array); void by_frame_send(uint32_t *data_array);
extern void by_frame_parse(uint8_t data_num, uint32_t *data_array); void by_frame_parse(uint32_t *data_array);
extern void by_frame_parse_uart_handle(uint8_t data); extern void by_frame_parse_uart_handle(uint8_t data);
#endif #endif

View File

@@ -279,7 +279,7 @@ void EXTI15_10_IRQHandler(void)
void TIM1_UP_IRQHandler(void) void TIM1_UP_IRQHandler(void)
{ {
if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET) { if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET) {
by_frame_send(2, &tiny_frame_param[0].u32); by_frame_send(&tiny_frame_param[0].u32);
TIM_ClearITPendingBit(TIM1, TIM_IT_Update); TIM_ClearITPendingBit(TIM1, TIM_IT_Update);
by_led_warn_blink(); by_led_warn_blink();
} }

View File

@@ -47,7 +47,7 @@ typedef union {
uint32_t u32; uint32_t u32;
int32_t s32; int32_t s32;
float f32; float f32;
uint8_t u8; uint8_t u8[4];
} TYPE_UNION; } TYPE_UNION;
typedef struct { typedef struct {

View File

@@ -58,6 +58,7 @@ int main(void)
by_buzzer_run(); by_buzzer_run();
tiny_frame_param[0].f32 = pure_angle; tiny_frame_param[0].f32 = pure_angle;
tiny_frame_param[1].f32 = dx_near; tiny_frame_param[1].f32 = dx_near;
tiny_frame_param[2].u32 = 0x19260817;
system_delay_ms(10); system_delay_ms(10);
if (mt9v03x_finish_flag) { if (mt9v03x_finish_flag) {
// 该操作消耗大概 1970 个 tick折合约 110us // 该操作消耗大概 1970 个 tick折合约 110us